{"title":"无界域上二阶差分方程解的渐近展开","authors":"Sofia V. Rumyantseva","doi":"10.1007/s10440-025-00706-0","DOIUrl":null,"url":null,"abstract":"<div><p>Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"195 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Expansion of Solutions of the 2nd Order Difference Equations in an Unbounded Domain\",\"authors\":\"Sofia V. Rumyantseva\",\"doi\":\"10.1007/s10440-025-00706-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00706-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00706-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Asymptotic Expansion of Solutions of the 2nd Order Difference Equations in an Unbounded Domain
Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.