无界域上二阶差分方程解的渐近展开

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Sofia V. Rumyantseva
{"title":"无界域上二阶差分方程解的渐近展开","authors":"Sofia V. Rumyantseva","doi":"10.1007/s10440-025-00706-0","DOIUrl":null,"url":null,"abstract":"<div><p>Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"195 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Expansion of Solutions of the 2nd Order Difference Equations in an Unbounded Domain\",\"authors\":\"Sofia V. Rumyantseva\",\"doi\":\"10.1007/s10440-025-00706-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-025-00706-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00706-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

差分方程在广泛的数学和物理任务中起着至关重要的作用。本文研究了一类二阶光滑系数线性齐次差分方程的WKB方法。众所周知,这样的方程在没有转弯点和奇点的段上表现出两个WKB解。我们建立了一个定理,证明了这些解在无界域上在一定条件下,关于系数在无穷远处的平滑性和增长行为的存在性。此外,利用这一定理,我们导出了大阶和大值的拉盖尔多项式的渐近展开式,得到了与现有结果一致的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Expansion of Solutions of the 2nd Order Difference Equations in an Unbounded Domain

Difference equations play a crucial role in a wide array of mathematical and physical tasks. In this article, we focus on the analysis of a second order linear homogeneous difference equation with smooth coefficients via WKB method. It is well-known that such equations exhibit two WKB solutions in a segment devoid of turning and singular points. We establish a theorem demonstrating the existence of these solutions in an unbounded domain under certain conditions regarding the smoothness and growth behavior of the coefficients at infinity. Furthermore, using this theorem, we derive the asymptotic expansion of Laguerre polynomials for large orders and values, yielding estimates that align with existing results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信