互联高架激光雷达传感器的综合规划框架

Nawfal Guefrachi;Michael C. Lucic;Mohammad Yassen;Hakim Ghazzai;Ahmad Alsharoa
{"title":"互联高架激光雷达传感器的综合规划框架","authors":"Nawfal Guefrachi;Michael C. Lucic;Mohammad Yassen;Hakim Ghazzai;Ahmad Alsharoa","doi":"10.1109/JSAS.2024.3506478","DOIUrl":null,"url":null,"abstract":"The combination of mobile edge computing (MEC) and sensing technologies, such as light detection and ranging (LiDAR), offers a viable path toward enhancing autonomous vehicle navigation and traffic monitoring in the context of intelligent transportation systems. In order to meet these needs, this article offers a methodology that investigates the use of elevated LiDAR (ELiD) and its integration with MEC. Our work focuses on two main challenges: optimizing the placement of ELiDs to ensure extensive urban coverage and minimizing network latency by efficiently routing data to MEC servers. By proposing a heuristic for real-time task allocation, we aim to enhance safety and operational efficiency in smart cities. Our findings show a modest optimality gap where the heuristic achieves a balance between computational efficiency and minimized cloud dependency, albeit at the cost of a marginally increased latency, highlighting the nuanced tradeoffs in edge-to-cloud task distribution for efficient LiDAR data processing in smart cities.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"2 ","pages":"54-70"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767283","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Planning Framework for Connected Elevated LiDAR Sensors\",\"authors\":\"Nawfal Guefrachi;Michael C. Lucic;Mohammad Yassen;Hakim Ghazzai;Ahmad Alsharoa\",\"doi\":\"10.1109/JSAS.2024.3506478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of mobile edge computing (MEC) and sensing technologies, such as light detection and ranging (LiDAR), offers a viable path toward enhancing autonomous vehicle navigation and traffic monitoring in the context of intelligent transportation systems. In order to meet these needs, this article offers a methodology that investigates the use of elevated LiDAR (ELiD) and its integration with MEC. Our work focuses on two main challenges: optimizing the placement of ELiDs to ensure extensive urban coverage and minimizing network latency by efficiently routing data to MEC servers. By proposing a heuristic for real-time task allocation, we aim to enhance safety and operational efficiency in smart cities. Our findings show a modest optimality gap where the heuristic achieves a balance between computational efficiency and minimized cloud dependency, albeit at the cost of a marginally increased latency, highlighting the nuanced tradeoffs in edge-to-cloud task distribution for efficient LiDAR data processing in smart cities.\",\"PeriodicalId\":100622,\"journal\":{\"name\":\"IEEE Journal of Selected Areas in Sensors\",\"volume\":\"2 \",\"pages\":\"54-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Areas in Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10767283/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10767283/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动边缘计算(MEC)与光探测和测距(LiDAR)等传感技术的结合,为在智能交通系统背景下增强自动驾驶车辆导航和交通监控提供了一条可行的途径。为了满足这些需求,本文提供了一种研究高架激光雷达(ELiD)的使用及其与MEC集成的方法。我们的工作主要集中在两个主要挑战:优化elid的放置,以确保广泛的城市覆盖,并通过有效地将数据路由到MEC服务器来最大限度地减少网络延迟。通过提出一种实时任务分配的启发式方法,我们旨在提高智慧城市的安全性和运行效率。我们的研究结果显示了适度的最优性差距,启发式算法在计算效率和最小化云依赖之间实现了平衡,尽管代价是延迟略微增加,突出了智能城市中高效激光雷达数据处理的边缘到云任务分配的微妙权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Planning Framework for Connected Elevated LiDAR Sensors
The combination of mobile edge computing (MEC) and sensing technologies, such as light detection and ranging (LiDAR), offers a viable path toward enhancing autonomous vehicle navigation and traffic monitoring in the context of intelligent transportation systems. In order to meet these needs, this article offers a methodology that investigates the use of elevated LiDAR (ELiD) and its integration with MEC. Our work focuses on two main challenges: optimizing the placement of ELiDs to ensure extensive urban coverage and minimizing network latency by efficiently routing data to MEC servers. By proposing a heuristic for real-time task allocation, we aim to enhance safety and operational efficiency in smart cities. Our findings show a modest optimality gap where the heuristic achieves a balance between computational efficiency and minimized cloud dependency, albeit at the cost of a marginally increased latency, highlighting the nuanced tradeoffs in edge-to-cloud task distribution for efficient LiDAR data processing in smart cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信