{"title":"Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives","authors":"Pan Gao, Yi Ji, Guangjin Hou","doi":"10.1021/jacs.4c10468","DOIUrl":null,"url":null,"abstract":"Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries. Herein, we present an overview of the current state of the art from an NMR perspective. We begin with a brief introduction to contemporary ssNMR methodologies. Subsequently, we introduce and provide critical reviews on the applications of different ssNMR techniques in the detailed characterizations of the surface local structures, disorders, defects, active sites, and acidity on metal oxide nanoparticles, as well as the revelation of mechanisms behind some intriguing chemistries that occur on the surfaces, referencing representative recent studies. Finally, we address the challenges beyond the current status and provide perspectives on the future development and application of advanced ssNMR methodologies in this emerging field.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"26 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries. Herein, we present an overview of the current state of the art from an NMR perspective. We begin with a brief introduction to contemporary ssNMR methodologies. Subsequently, we introduce and provide critical reviews on the applications of different ssNMR techniques in the detailed characterizations of the surface local structures, disorders, defects, active sites, and acidity on metal oxide nanoparticles, as well as the revelation of mechanisms behind some intriguing chemistries that occur on the surfaces, referencing representative recent studies. Finally, we address the challenges beyond the current status and provide perspectives on the future development and application of advanced ssNMR methodologies in this emerging field.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.