可见光驱动的阴离子中继化学(ARC):全取代吡唑的构建

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Guodan Lu, Tao Zhang, Xionglve Cheng, Kehan Qian, Yong Wang, Xiaobing Wan
{"title":"可见光驱动的阴离子中继化学(ARC):全取代吡唑的构建","authors":"Guodan Lu, Tao Zhang, Xionglve Cheng, Kehan Qian, Yong Wang, Xiaobing Wan","doi":"10.1039/d4qo02072c","DOIUrl":null,"url":null,"abstract":"Anion relay chemistry (ARC) is a multi-component union strategy that has emerged as a powerful approach for synthesizing complex structures. However, previous studies have primarily concentrated on thermally controlled reaction modes. In this study, we report the development of an unprecedented visible-light-driven anion relay chemistry (ARC) strategy. Utilizing an energy-transfer process, we successfully transformed tosylhydrazones into anionic donors, facilitating the synthesis of fully substituted pyrazole derivatives under mild conditions. Furthermore, a combination of experimental mechanistic investigations and computational studies (DFT) not only corroborated the proposed mechanism of the reaction but also inspired additional avenues for future research.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"23 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible-light-driven Anion Relay Chemistry (ARC): Construction of Fully Substituted Pyrazoles\",\"authors\":\"Guodan Lu, Tao Zhang, Xionglve Cheng, Kehan Qian, Yong Wang, Xiaobing Wan\",\"doi\":\"10.1039/d4qo02072c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anion relay chemistry (ARC) is a multi-component union strategy that has emerged as a powerful approach for synthesizing complex structures. However, previous studies have primarily concentrated on thermally controlled reaction modes. In this study, we report the development of an unprecedented visible-light-driven anion relay chemistry (ARC) strategy. Utilizing an energy-transfer process, we successfully transformed tosylhydrazones into anionic donors, facilitating the synthesis of fully substituted pyrazole derivatives under mild conditions. Furthermore, a combination of experimental mechanistic investigations and computational studies (DFT) not only corroborated the proposed mechanism of the reaction but also inspired additional avenues for future research.\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qo02072c\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo02072c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visible-light-driven Anion Relay Chemistry (ARC): Construction of Fully Substituted Pyrazoles
Anion relay chemistry (ARC) is a multi-component union strategy that has emerged as a powerful approach for synthesizing complex structures. However, previous studies have primarily concentrated on thermally controlled reaction modes. In this study, we report the development of an unprecedented visible-light-driven anion relay chemistry (ARC) strategy. Utilizing an energy-transfer process, we successfully transformed tosylhydrazones into anionic donors, facilitating the synthesis of fully substituted pyrazole derivatives under mild conditions. Furthermore, a combination of experimental mechanistic investigations and computational studies (DFT) not only corroborated the proposed mechanism of the reaction but also inspired additional avenues for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信