Hooman Hefzi, Iván Martínez-Monge, Igor Marin de Mas, Nicholas Luke Cowie, Alejandro Gomez Toledo, Soo Min Noh, Karen Julie la Cour Karottki, Marianne Decker, Johnny Arnsdorf, Jose Manuel Camacho-Zaragoza, Stefan Kol, Sanne Schoffelen, Nuša Pristovšek, Anders Holmgaard Hansen, Antonio A. Miguez, Sara Petersen Bjørn, Karen Kathrine Brøndum, Elham Maria Javidi, Kristian Lund Jensen, Laura Stangl, Emanuel Kreidl, Thomas Beuchert Kallehauge, Daniel Ley, Patrice Ménard, Helle Munck Petersen, Zulfiya Sukhova, Anton Bauer, Emilio Casanova, Niall Barron, Johan Malmström, Lars K. Nielsen, Gyun Min Lee, Helene Faustrup Kildegaard, Bjørn G. Voldborg, Nathan E. Lewis
{"title":"多重基因组编辑在不影响哺乳动物细胞生长速率的情况下消除了乳酸的产生","authors":"Hooman Hefzi, Iván Martínez-Monge, Igor Marin de Mas, Nicholas Luke Cowie, Alejandro Gomez Toledo, Soo Min Noh, Karen Julie la Cour Karottki, Marianne Decker, Johnny Arnsdorf, Jose Manuel Camacho-Zaragoza, Stefan Kol, Sanne Schoffelen, Nuša Pristovšek, Anders Holmgaard Hansen, Antonio A. Miguez, Sara Petersen Bjørn, Karen Kathrine Brøndum, Elham Maria Javidi, Kristian Lund Jensen, Laura Stangl, Emanuel Kreidl, Thomas Beuchert Kallehauge, Daniel Ley, Patrice Ménard, Helle Munck Petersen, Zulfiya Sukhova, Anton Bauer, Emilio Casanova, Niall Barron, Johan Malmström, Lars K. Nielsen, Gyun Min Lee, Helene Faustrup Kildegaard, Bjørn G. Voldborg, Nathan E. Lewis","doi":"10.1038/s42255-024-01193-7","DOIUrl":null,"url":null,"abstract":"<p>The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"76 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplex genome editing eliminates lactate production without impacting growth rate in mammalian cells\",\"authors\":\"Hooman Hefzi, Iván Martínez-Monge, Igor Marin de Mas, Nicholas Luke Cowie, Alejandro Gomez Toledo, Soo Min Noh, Karen Julie la Cour Karottki, Marianne Decker, Johnny Arnsdorf, Jose Manuel Camacho-Zaragoza, Stefan Kol, Sanne Schoffelen, Nuša Pristovšek, Anders Holmgaard Hansen, Antonio A. Miguez, Sara Petersen Bjørn, Karen Kathrine Brøndum, Elham Maria Javidi, Kristian Lund Jensen, Laura Stangl, Emanuel Kreidl, Thomas Beuchert Kallehauge, Daniel Ley, Patrice Ménard, Helle Munck Petersen, Zulfiya Sukhova, Anton Bauer, Emilio Casanova, Niall Barron, Johan Malmström, Lars K. Nielsen, Gyun Min Lee, Helene Faustrup Kildegaard, Bjørn G. Voldborg, Nathan E. Lewis\",\"doi\":\"10.1038/s42255-024-01193-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.</p>\",\"PeriodicalId\":19038,\"journal\":{\"name\":\"Nature metabolism\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s42255-024-01193-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01193-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Multiplex genome editing eliminates lactate production without impacting growth rate in mammalian cells
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.