{"title":"提高可见光通信物理层安全性能的概率星座整形实用设计","authors":"Thanh V. Pham;Susumu Ishihara","doi":"10.1109/TCOMM.2025.3529222","DOIUrl":null,"url":null,"abstract":"This paper studies a practical design of probabilistic constellation shaping (PCS) for enhancing the performance of physical layer security in visible light communications (VLC). In particular, we consider a wiretap VLC channel employing a probabilistically shaped M-ary pulse amplitude modulation (PAM) constellation. Considering the requirements for reliability of the legitimate user’s channel, flickering-free transmission, and symmetric constellation distribution, the optimal constellation distributions to maximize modulation-constrained secrecy capacity or the bit error rate (BER) of eavesdropper’s channel are investigated for both scenarios of known and unknown eavesdropper’s channel state information (CSI). To formulate the constraint on the channel reliability, tractable closed-form expressions for the upper bound and approximate BER of M-ary PAM under an arbitrary symbol probability are derived. The design problem is shown to be non-convex due to the non-convex BER constraint. By proving that the upper bound BER is a concave function of the constellation distribution, a suboptimal solution based on the convex-concave procedure (CCCP) is presented. Our findings reveal that while the uniform signaling can only satisfy the BER constraint when the optical power is beyond a certain value, the proposed PCS design works in the entire region of the optical power. Some insights into the optimal constellation distribution with respect to the emitted optical power are also discussed.","PeriodicalId":13041,"journal":{"name":"IEEE Transactions on Communications","volume":"73 8","pages":"6236-6250"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Design of Probabilistic Constellation Shaping for Enhancing Performance of Physical Layer Security in Visible Light Communications\",\"authors\":\"Thanh V. Pham;Susumu Ishihara\",\"doi\":\"10.1109/TCOMM.2025.3529222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a practical design of probabilistic constellation shaping (PCS) for enhancing the performance of physical layer security in visible light communications (VLC). In particular, we consider a wiretap VLC channel employing a probabilistically shaped M-ary pulse amplitude modulation (PAM) constellation. Considering the requirements for reliability of the legitimate user’s channel, flickering-free transmission, and symmetric constellation distribution, the optimal constellation distributions to maximize modulation-constrained secrecy capacity or the bit error rate (BER) of eavesdropper’s channel are investigated for both scenarios of known and unknown eavesdropper’s channel state information (CSI). To formulate the constraint on the channel reliability, tractable closed-form expressions for the upper bound and approximate BER of M-ary PAM under an arbitrary symbol probability are derived. The design problem is shown to be non-convex due to the non-convex BER constraint. By proving that the upper bound BER is a concave function of the constellation distribution, a suboptimal solution based on the convex-concave procedure (CCCP) is presented. Our findings reveal that while the uniform signaling can only satisfy the BER constraint when the optical power is beyond a certain value, the proposed PCS design works in the entire region of the optical power. Some insights into the optimal constellation distribution with respect to the emitted optical power are also discussed.\",\"PeriodicalId\":13041,\"journal\":{\"name\":\"IEEE Transactions on Communications\",\"volume\":\"73 8\",\"pages\":\"6236-6250\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839412/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839412/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Practical Design of Probabilistic Constellation Shaping for Enhancing Performance of Physical Layer Security in Visible Light Communications
This paper studies a practical design of probabilistic constellation shaping (PCS) for enhancing the performance of physical layer security in visible light communications (VLC). In particular, we consider a wiretap VLC channel employing a probabilistically shaped M-ary pulse amplitude modulation (PAM) constellation. Considering the requirements for reliability of the legitimate user’s channel, flickering-free transmission, and symmetric constellation distribution, the optimal constellation distributions to maximize modulation-constrained secrecy capacity or the bit error rate (BER) of eavesdropper’s channel are investigated for both scenarios of known and unknown eavesdropper’s channel state information (CSI). To formulate the constraint on the channel reliability, tractable closed-form expressions for the upper bound and approximate BER of M-ary PAM under an arbitrary symbol probability are derived. The design problem is shown to be non-convex due to the non-convex BER constraint. By proving that the upper bound BER is a concave function of the constellation distribution, a suboptimal solution based on the convex-concave procedure (CCCP) is presented. Our findings reveal that while the uniform signaling can only satisfy the BER constraint when the optical power is beyond a certain value, the proposed PCS design works in the entire region of the optical power. Some insights into the optimal constellation distribution with respect to the emitted optical power are also discussed.
期刊介绍:
The IEEE Transactions on Communications is dedicated to publishing high-quality manuscripts that showcase advancements in the state-of-the-art of telecommunications. Our scope encompasses all aspects of telecommunications, including telephone, telegraphy, facsimile, and television, facilitated by electromagnetic propagation methods such as radio, wire, aerial, underground, coaxial, and submarine cables, as well as waveguides, communication satellites, and lasers. We cover telecommunications in various settings, including marine, aeronautical, space, and fixed station services, addressing topics such as repeaters, radio relaying, signal storage, regeneration, error detection and correction, multiplexing, carrier techniques, communication switching systems, data communications, and communication theory. Join us in advancing the field of telecommunications through groundbreaking research and innovation.