LEPRE:可更新的数据库相关范围编码算法

Hsin-Tsung Lin;Wei-Cheng Chen;Pi-Chung Wang
{"title":"LEPRE:可更新的数据库相关范围编码算法","authors":"Hsin-Tsung Lin;Wei-Cheng Chen;Pi-Chung Wang","doi":"10.1109/JSAC.2025.3528816","DOIUrl":null,"url":null,"abstract":"Packet classification is a key mechanism that classifies incoming packets into flows to enable software-defined networking as well as a variety of networking services. Currently, ternary content addressable memory (TCAM) has been widely used for high-speed and low-latency packet classification. However, both range expansion and update performance are the fundamental issues for TCAM-based packet classification. A rule containing ranges could be replicated to multiple rules after converting its ranges into prefixes or ternary strings to occupy more than one TCAM entry. Many range encoding algorithms have been proposed to alleviate or avoid the problem of range expansion. These algorithms can be classified into database-independent (DI) and database-dependent (DD). While database-independent algorithms can accommodate new ranges without re-encoding the existing ranges, they may still cause rule replication. In contrast, database-dependent algorithms could avoid rule replication by adaptively encoding ranges, but new ranges may result in updates of the existing ranges. Accordingly, both types of algorithms may multiply the cost of TCAM updates. In this paper, we propose a DD range-encoding algorithm, Longest Enclosure Prefix Range Encoding (LEPRE), which can ensure that any new range does not cause any rule replication and re-encoding of the existing ranges. LEPRE employs the original fields as a part of range encoding to significantly decrease the requirements of extra bits for range encoding. Our experiment results show that LEPRE can maximize the TCAM storage efficiency. LEPRE also fully supports incremental updates to minimize the latency of TCAM updates.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 2","pages":"551-562"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LEPRE: An Updatable Database-Dependent Range Encoding Algorithm\",\"authors\":\"Hsin-Tsung Lin;Wei-Cheng Chen;Pi-Chung Wang\",\"doi\":\"10.1109/JSAC.2025.3528816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet classification is a key mechanism that classifies incoming packets into flows to enable software-defined networking as well as a variety of networking services. Currently, ternary content addressable memory (TCAM) has been widely used for high-speed and low-latency packet classification. However, both range expansion and update performance are the fundamental issues for TCAM-based packet classification. A rule containing ranges could be replicated to multiple rules after converting its ranges into prefixes or ternary strings to occupy more than one TCAM entry. Many range encoding algorithms have been proposed to alleviate or avoid the problem of range expansion. These algorithms can be classified into database-independent (DI) and database-dependent (DD). While database-independent algorithms can accommodate new ranges without re-encoding the existing ranges, they may still cause rule replication. In contrast, database-dependent algorithms could avoid rule replication by adaptively encoding ranges, but new ranges may result in updates of the existing ranges. Accordingly, both types of algorithms may multiply the cost of TCAM updates. In this paper, we propose a DD range-encoding algorithm, Longest Enclosure Prefix Range Encoding (LEPRE), which can ensure that any new range does not cause any rule replication and re-encoding of the existing ranges. LEPRE employs the original fields as a part of range encoding to significantly decrease the requirements of extra bits for range encoding. Our experiment results show that LEPRE can maximize the TCAM storage efficiency. LEPRE also fully supports incremental updates to minimize the latency of TCAM updates.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 2\",\"pages\":\"551-562\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839031/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839031/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据包分类是一种关键机制,它将传入的数据包分类为流,以支持软件定义的网络以及各种网络服务。目前,三元内容可寻址存储器(TCAM)已被广泛用于高速、低延迟的分组分类。然而,范围扩展和更新性能是基于tcam的分组分类的基本问题。在将包含范围的规则转换为前缀或三元字符串以占用多个TCAM条目之后,可以将包含范围的规则复制到多个规则中。为了缓解或避免距离扩展问题,已经提出了许多距离编码算法。这些算法可分为数据库独立算法(DI)和数据库依赖算法(DD)。虽然与数据库无关的算法可以适应新的范围,而无需对现有范围进行重新编码,但它们仍然可能导致规则复制。相反,依赖于数据库的算法可以通过自适应编码范围来避免规则复制,但是新的范围可能导致对现有范围的更新。因此,这两种算法都可能增加TCAM更新的成本。本文提出了一种DD范围编码算法——最长框前缀范围编码(LEPRE),它可以保证任何新的范围都不会引起任何规则复制和对现有范围的重新编码。LEPRE采用原始字段作为范围编码的一部分,大大减少了范围编码对额外比特的需求。实验结果表明,LEPRE可以最大限度地提高TCAM的存储效率。LEPRE还完全支持增量更新,以尽量减少TCAM更新的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEPRE: An Updatable Database-Dependent Range Encoding Algorithm
Packet classification is a key mechanism that classifies incoming packets into flows to enable software-defined networking as well as a variety of networking services. Currently, ternary content addressable memory (TCAM) has been widely used for high-speed and low-latency packet classification. However, both range expansion and update performance are the fundamental issues for TCAM-based packet classification. A rule containing ranges could be replicated to multiple rules after converting its ranges into prefixes or ternary strings to occupy more than one TCAM entry. Many range encoding algorithms have been proposed to alleviate or avoid the problem of range expansion. These algorithms can be classified into database-independent (DI) and database-dependent (DD). While database-independent algorithms can accommodate new ranges without re-encoding the existing ranges, they may still cause rule replication. In contrast, database-dependent algorithms could avoid rule replication by adaptively encoding ranges, but new ranges may result in updates of the existing ranges. Accordingly, both types of algorithms may multiply the cost of TCAM updates. In this paper, we propose a DD range-encoding algorithm, Longest Enclosure Prefix Range Encoding (LEPRE), which can ensure that any new range does not cause any rule replication and re-encoding of the existing ranges. LEPRE employs the original fields as a part of range encoding to significantly decrease the requirements of extra bits for range encoding. Our experiment results show that LEPRE can maximize the TCAM storage efficiency. LEPRE also fully supports incremental updates to minimize the latency of TCAM updates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信