{"title":"基于语言前景感知对比的广义机器人视觉语言学习模型","authors":"Kangcheng Liu, Chaoqun Wang, Xiaodong Han, Yong-Jin Liu, Baoquan Chen","doi":"10.1007/s11263-024-02340-z","DOIUrl":null,"url":null,"abstract":"<p>Contrastive learning has recently demonstrated great potential for unsupervised pre-training in 3D scene understanding tasks. However, most existing work randomly selects point features as anchors while building contrast, leading to a clear bias toward background points that often dominate in 3D scenes. Also, object awareness and foreground-to-background discrimination are neglected, making contrastive learning less effective. To tackle these issues, we propose a general foreground-aware feature contrast FAC++ framework to learn more effective point cloud representations in pre-training. FAC++ consists of two novel contrast designs to construct more effective and informative contrast pairs. The first is building positive pairs within the same foreground segment where points tend to have the same semantics. The second is that we prevent over-discrimination between 3D segments/objects and encourage grouped foreground-to-background distinctions at the segment level with adaptive feature learning in a Siamese correspondence network, which adaptively learns feature correlations within and across point cloud views effectively. Our proposed approach enhances both the local coherence as well as the overall feature discrimination. Moreover, we have designed the linguistic foreground-aware regional point sampling to enhance more balanced foreground-aware learning, which is termed FAC++. Visualization with point activation maps shows that our contrast pairs capture clear correspondences among foreground regions during pre-training. Quantitative experiments also show that FAC++ achieves superior knowledge transfer and data efficiency in various downstream 3D semantic segmentation, instance segmentation as well as object detection tasks. All codes, data, and models are available at: (https://github.com/KangchengLiu/FAC_Foreground_Aware_Contrast).</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Robotic Vision-Language Learning Model via Linguistic Foreground-Aware Contrast\",\"authors\":\"Kangcheng Liu, Chaoqun Wang, Xiaodong Han, Yong-Jin Liu, Baoquan Chen\",\"doi\":\"10.1007/s11263-024-02340-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contrastive learning has recently demonstrated great potential for unsupervised pre-training in 3D scene understanding tasks. However, most existing work randomly selects point features as anchors while building contrast, leading to a clear bias toward background points that often dominate in 3D scenes. Also, object awareness and foreground-to-background discrimination are neglected, making contrastive learning less effective. To tackle these issues, we propose a general foreground-aware feature contrast FAC++ framework to learn more effective point cloud representations in pre-training. FAC++ consists of two novel contrast designs to construct more effective and informative contrast pairs. The first is building positive pairs within the same foreground segment where points tend to have the same semantics. The second is that we prevent over-discrimination between 3D segments/objects and encourage grouped foreground-to-background distinctions at the segment level with adaptive feature learning in a Siamese correspondence network, which adaptively learns feature correlations within and across point cloud views effectively. Our proposed approach enhances both the local coherence as well as the overall feature discrimination. Moreover, we have designed the linguistic foreground-aware regional point sampling to enhance more balanced foreground-aware learning, which is termed FAC++. Visualization with point activation maps shows that our contrast pairs capture clear correspondences among foreground regions during pre-training. Quantitative experiments also show that FAC++ achieves superior knowledge transfer and data efficiency in various downstream 3D semantic segmentation, instance segmentation as well as object detection tasks. All codes, data, and models are available at: (https://github.com/KangchengLiu/FAC_Foreground_Aware_Contrast).</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02340-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02340-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Generalized Robotic Vision-Language Learning Model via Linguistic Foreground-Aware Contrast
Contrastive learning has recently demonstrated great potential for unsupervised pre-training in 3D scene understanding tasks. However, most existing work randomly selects point features as anchors while building contrast, leading to a clear bias toward background points that often dominate in 3D scenes. Also, object awareness and foreground-to-background discrimination are neglected, making contrastive learning less effective. To tackle these issues, we propose a general foreground-aware feature contrast FAC++ framework to learn more effective point cloud representations in pre-training. FAC++ consists of two novel contrast designs to construct more effective and informative contrast pairs. The first is building positive pairs within the same foreground segment where points tend to have the same semantics. The second is that we prevent over-discrimination between 3D segments/objects and encourage grouped foreground-to-background distinctions at the segment level with adaptive feature learning in a Siamese correspondence network, which adaptively learns feature correlations within and across point cloud views effectively. Our proposed approach enhances both the local coherence as well as the overall feature discrimination. Moreover, we have designed the linguistic foreground-aware regional point sampling to enhance more balanced foreground-aware learning, which is termed FAC++. Visualization with point activation maps shows that our contrast pairs capture clear correspondences among foreground regions during pre-training. Quantitative experiments also show that FAC++ achieves superior knowledge transfer and data efficiency in various downstream 3D semantic segmentation, instance segmentation as well as object detection tasks. All codes, data, and models are available at: (https://github.com/KangchengLiu/FAC_Foreground_Aware_Contrast).
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.