从量子几何高效预测超晶格和反常迷你带拓扑结构

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Valentin Crépel, Jennifer Cano
{"title":"从量子几何高效预测超晶格和反常迷你带拓扑结构","authors":"Valentin Crépel, Jennifer Cano","doi":"10.1103/physrevx.15.011004","DOIUrl":null,"url":null,"abstract":"Two-dimensional materials subject to long-wavelength modulations have emerged as novel platforms to study topological and correlated quantum phases. In this article, we develop a versatile and computationally inexpensive method to predict the topological properties of materials subjected to a superlattice potential by combining degenerate perturbation theory with the method of symmetry indicators. In the absence of electronic interactions, our analysis provides a systematic rule to find the Chern number of the superlattice-induced miniband starting from the harmonics of the applied potential and a few material-specific coefficients. Our method also applies to anomalous (interaction-generated) bands, for which we derive an efficient algorithm to determine all Chern numbers compatible with a self-consistent solution to the Hartree-Fock equations. Our approach gives a microscopic understanding of the quantum anomalous Hall insulators recently observed in rhombohedral graphene multilayers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"6 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Prediction of Superlattice and Anomalous Miniband Topology from Quantum Geometry\",\"authors\":\"Valentin Crépel, Jennifer Cano\",\"doi\":\"10.1103/physrevx.15.011004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional materials subject to long-wavelength modulations have emerged as novel platforms to study topological and correlated quantum phases. In this article, we develop a versatile and computationally inexpensive method to predict the topological properties of materials subjected to a superlattice potential by combining degenerate perturbation theory with the method of symmetry indicators. In the absence of electronic interactions, our analysis provides a systematic rule to find the Chern number of the superlattice-induced miniband starting from the harmonics of the applied potential and a few material-specific coefficients. Our method also applies to anomalous (interaction-generated) bands, for which we derive an efficient algorithm to determine all Chern numbers compatible with a self-consistent solution to the Hartree-Fock equations. Our approach gives a microscopic understanding of the quantum anomalous Hall insulators recently observed in rhombohedral graphene multilayers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011004\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受长波长调制的二维材料已经成为研究拓扑和相关量子相的新平台。在本文中,我们开发了一种通用的、计算成本低廉的方法,通过将简并微扰理论与对称指标方法相结合来预测受超晶格势影响的材料的拓扑性质。在没有电子相互作用的情况下,我们的分析提供了一个系统的规则,可以从施加电位的谐波和一些材料特定系数开始找到超晶格诱导的小带的陈恩数。我们的方法也适用于异常(相互作用产生的)波段,为此我们推导了一种有效的算法来确定与Hartree-Fock方程的自洽解兼容的所有Chern数。我们的方法提供了一个微观的理解量子反常霍尔绝缘体最近观察到的菱形石墨烯多层。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Prediction of Superlattice and Anomalous Miniband Topology from Quantum Geometry
Two-dimensional materials subject to long-wavelength modulations have emerged as novel platforms to study topological and correlated quantum phases. In this article, we develop a versatile and computationally inexpensive method to predict the topological properties of materials subjected to a superlattice potential by combining degenerate perturbation theory with the method of symmetry indicators. In the absence of electronic interactions, our analysis provides a systematic rule to find the Chern number of the superlattice-induced miniband starting from the harmonics of the applied potential and a few material-specific coefficients. Our method also applies to anomalous (interaction-generated) bands, for which we derive an efficient algorithm to determine all Chern numbers compatible with a self-consistent solution to the Hartree-Fock equations. Our approach gives a microscopic understanding of the quantum anomalous Hall insulators recently observed in rhombohedral graphene multilayers. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信