Yuekai Li, Jiashun Xiao, Jingsi Ming, Yicheng Zeng, Mingxuan Cai
{"title":"Funmap:集成高维函数注释,改进精细映射。","authors":"Yuekai Li, Jiashun Xiao, Jingsi Ming, Yicheng Zeng, Mingxuan Cai","doi":"10.1093/bioinformatics/btaf017","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of genome-wide association study risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.</p><p><strong>Results: </strong>In this study, we propose a unified method to integrate high-dimensional functional annotations with fine-mapping (Funmap). Funmap can effectively improve the power of fine-mapping by borrowing information from hundreds of functional annotations. Meanwhile, it relates the annotation to the causal probability with a random effects model that avoids the over-fitting issue, thereby producing a well-controlled false positive rate. Paired with a fast algorithm, Funmap enables scalable integration of a large number of annotations to facilitate prioritizing multiple causal single nucleotide polymorphisms. Our comprehensive simulations across a wide range of annotation relevance settings demonstrate that Funmap is the only method that produces well-calibrated false discovery rate under the setting of high-dimensional annotations while achieving better or comparable power gains as compared to existing methods. By integrating genome-wide association studies of 4 lipid traits with 187 functional annotations, Funmap consistently identified more variants that can be replicated in an independent cohort, achieving 15.5%-26.2% improvement over the runner-up in terms of replication rate.</p><p><strong>Availability and implementation: </strong>The Funmap software and all analysis code are available at https://github.com/LeeHITsz/Funmap.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Funmap: integrating high-dimensional functional annotations to improve fine-mapping.\",\"authors\":\"Yuekai Li, Jiashun Xiao, Jingsi Ming, Yicheng Zeng, Mingxuan Cai\",\"doi\":\"10.1093/bioinformatics/btaf017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of genome-wide association study risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.</p><p><strong>Results: </strong>In this study, we propose a unified method to integrate high-dimensional functional annotations with fine-mapping (Funmap). Funmap can effectively improve the power of fine-mapping by borrowing information from hundreds of functional annotations. Meanwhile, it relates the annotation to the causal probability with a random effects model that avoids the over-fitting issue, thereby producing a well-controlled false positive rate. Paired with a fast algorithm, Funmap enables scalable integration of a large number of annotations to facilitate prioritizing multiple causal single nucleotide polymorphisms. Our comprehensive simulations across a wide range of annotation relevance settings demonstrate that Funmap is the only method that produces well-calibrated false discovery rate under the setting of high-dimensional annotations while achieving better or comparable power gains as compared to existing methods. By integrating genome-wide association studies of 4 lipid traits with 187 functional annotations, Funmap consistently identified more variants that can be replicated in an independent cohort, achieving 15.5%-26.2% improvement over the runner-up in terms of replication rate.</p><p><strong>Availability and implementation: </strong>The Funmap software and all analysis code are available at https://github.com/LeeHITsz/Funmap.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Funmap: integrating high-dimensional functional annotations to improve fine-mapping.
Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of genome-wide association study risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.
Results: In this study, we propose a unified method to integrate high-dimensional functional annotations with fine-mapping (Funmap). Funmap can effectively improve the power of fine-mapping by borrowing information from hundreds of functional annotations. Meanwhile, it relates the annotation to the causal probability with a random effects model that avoids the over-fitting issue, thereby producing a well-controlled false positive rate. Paired with a fast algorithm, Funmap enables scalable integration of a large number of annotations to facilitate prioritizing multiple causal single nucleotide polymorphisms. Our comprehensive simulations across a wide range of annotation relevance settings demonstrate that Funmap is the only method that produces well-calibrated false discovery rate under the setting of high-dimensional annotations while achieving better or comparable power gains as compared to existing methods. By integrating genome-wide association studies of 4 lipid traits with 187 functional annotations, Funmap consistently identified more variants that can be replicated in an independent cohort, achieving 15.5%-26.2% improvement over the runner-up in terms of replication rate.
Availability and implementation: The Funmap software and all analysis code are available at https://github.com/LeeHITsz/Funmap.