DDGemb:通过嵌入和深度学习预测单点和多点变化的蛋白质稳定性变化。

Castrense Savojardo, Matteo Manfredi, Pier Luigi Martelli, Rita Casadio
{"title":"DDGemb:通过嵌入和深度学习预测单点和多点变化的蛋白质稳定性变化。","authors":"Castrense Savojardo, Matteo Manfredi, Pier Luigi Martelli, Rita Casadio","doi":"10.1093/bioinformatics/btaf019","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.</p><p><strong>Results: </strong>In this work, we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations. DDGemb has been trained on a high-quality dataset derived from literature and tested on available benchmark datasets of single- and multi-point variations. DDGemb performs at the state of the art in both single- and multi-point variations.</p><p><strong>Availability and implementation: </strong>DDGemb is available as web server at https://ddgemb.biocomp.unibo.it. Datasets used in this study are available at https://ddgemb.biocomp.unibo.it/datasets.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783275/pdf/","citationCount":"0","resultStr":"{\"title\":\"DDGemb: predicting protein stability change upon single- and multi-point variations with embeddings and deep learning.\",\"authors\":\"Castrense Savojardo, Matteo Manfredi, Pier Luigi Martelli, Rita Casadio\",\"doi\":\"10.1093/bioinformatics/btaf019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.</p><p><strong>Results: </strong>In this work, we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations. DDGemb has been trained on a high-quality dataset derived from literature and tested on available benchmark datasets of single- and multi-point variations. DDGemb performs at the state of the art in both single- and multi-point variations.</p><p><strong>Availability and implementation: </strong>DDGemb is available as web server at https://ddgemb.biocomp.unibo.it. Datasets used in this study are available at https://ddgemb.biocomp.unibo.it/datasets.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:了解残基变异后的蛋白质稳定性是功能蛋白设计和理解蛋白质变异如何促进疾病发生的重要一步。计算方法是重要的补充实验方法,并允许快速筛选大数据集的变化。结果:在这项工作中,我们提出了DDGemb,一种结合蛋白质语言模型嵌入和转换器架构来预测蛋白质ΔΔG在单点和多点变化的新方法。DDGemb已经在来自文献的高质量数据集上进行了训练,并在单点和多点变化的可用基准数据集上进行了测试。DDGemb在单点和多点变化中执行最先进的技术。可用性:DDGemb作为web服务器可在https://ddgemb.biocomp.unibo.it上获得。本研究中使用的数据集可在https://ddgemb.biocomp.unibo.it/datasets上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDGemb: predicting protein stability change upon single- and multi-point variations with embeddings and deep learning.

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work, we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations. DDGemb has been trained on a high-quality dataset derived from literature and tested on available benchmark datasets of single- and multi-point variations. DDGemb performs at the state of the art in both single- and multi-point variations.

Availability and implementation: DDGemb is available as web server at https://ddgemb.biocomp.unibo.it. Datasets used in this study are available at https://ddgemb.biocomp.unibo.it/datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信