生物学数学模型中可识别性分析的系统计算框架。

ArXiv Pub Date : 2025-01-20
Shun Wang, Wenrui Hao
{"title":"生物学数学模型中可识别性分析的系统计算框架。","authors":"Shun Wang, Wenrui Hao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Practical identifiability is a critical concern in data-driven modeling of mathematical systems. In this paper, we propose a novel framework for practical identifiability analysis to evaluate parameter identifiability in mathematical models of biological systems. Starting with a rigorous mathematical definition of practical identifiability, we demonstrate its equivalence to the invertibility of the Fisher Information Matrix. Our framework establishes the relationship between practical identifiability and coordinate identifiability, introducing a novel metric that simplifies and accelerates the evaluation of parameter identifiability compared to the profile likelihood method. Additionally, we introduce new regularization terms to address non-identifiable parameters, enabling uncertainty quantification and improving model reliability. To guide experimental design, we present an optimal data collection algorithm that ensures all model parameters are practically identifiable. Applications to Hill functions, neural networks, and dynamic biological models demonstrate the feasibility and efficiency of the proposed computational framework in uncovering critical biological processes and identifying key observable variables.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722522/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology.\",\"authors\":\"Shun Wang, Wenrui Hao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Practical identifiability is a critical concern in data-driven modeling of mathematical systems. In this paper, we propose a novel framework for practical identifiability analysis to evaluate parameter identifiability in mathematical models of biological systems. Starting with a rigorous mathematical definition of practical identifiability, we demonstrate its equivalence to the invertibility of the Fisher Information Matrix. Our framework establishes the relationship between practical identifiability and coordinate identifiability, introducing a novel metric that simplifies and accelerates the evaluation of parameter identifiability compared to the profile likelihood method. Additionally, we introduce new regularization terms to address non-identifiable parameters, enabling uncertainty quantification and improving model reliability. To guide experimental design, we present an optimal data collection algorithm that ensures all model parameters are practically identifiable. Applications to Hill functions, neural networks, and dynamic biological models demonstrate the feasibility and efficiency of the proposed computational framework in uncovering critical biological processes and identifying key observable variables.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722522/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数学系统的数据驱动建模中,实际可识别性是一个关键问题。本文提出了一种实用的可辨识性分析框架,用于评价生物系统数学模型中参数的可辨识性。从实际可辨识性的严格数学定义开始,我们证明了它与费雪信息矩阵的可逆性是等价的。我们的框架建立了实际可识别性和坐标可识别性之间的关系,引入了一种新的度量,与轮廓似然法相比,它简化和加速了参数可识别性的评估。此外,我们引入了新的正则化术语来处理不可识别的参数,使不确定性量化和提高模型可靠性。为了指导实验设计,我们提出了一个最佳的数据收集算法,以确保所有模型参数实际上是可识别的。Hill函数、神经网络和动态生物学模型的应用证明了所提出的计算框架在揭示关键生物过程和识别关键可观察变量方面的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology.

Practical identifiability is a critical concern in data-driven modeling of mathematical systems. In this paper, we propose a novel framework for practical identifiability analysis to evaluate parameter identifiability in mathematical models of biological systems. Starting with a rigorous mathematical definition of practical identifiability, we demonstrate its equivalence to the invertibility of the Fisher Information Matrix. Our framework establishes the relationship between practical identifiability and coordinate identifiability, introducing a novel metric that simplifies and accelerates the evaluation of parameter identifiability compared to the profile likelihood method. Additionally, we introduce new regularization terms to address non-identifiable parameters, enabling uncertainty quantification and improving model reliability. To guide experimental design, we present an optimal data collection algorithm that ensures all model parameters are practically identifiable. Applications to Hill functions, neural networks, and dynamic biological models demonstrate the feasibility and efficiency of the proposed computational framework in uncovering critical biological processes and identifying key observable variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信