使用带标记混合器的预训练图神经网络作为构象动力学的几何特征。

ArXiv Pub Date : 2024-12-31
Zihan Pengmei, Chatipat Lorpaiboon, Spencer C Guo, Jonathan Weare, Aaron R Dinner
{"title":"使用带标记混合器的预训练图神经网络作为构象动力学的几何特征。","authors":"Zihan Pengmei, Chatipat Lorpaiboon, Spencer C Guo, Jonathan Weare, Aaron R Dinner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics.\",\"authors\":\"Zihan Pengmei, Chatipat Lorpaiboon, Spencer C Guo, Jonathan Weare, Aaron R Dinner\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分子模拟中识别具有动态特征的低维信息特征仍然是一项挑战,通常需要大量的手动调整和特定系统知识。在这里,我们引入了 geom2vec,将预训练的图神经网络(GNN)用作通用几何特征识别器。通过在大型分子构象数据集上以自监督去噪为目标预训练等变 GNN,我们获得了可迁移的结构表征,无需进一步微调即可学习构象动力学。我们展示了学习到的 GNN 表征如何通过与表达性标记混合器相结合来捕捉结构单元(标记)之间可解释的关系。重要的是,将 GNN 的训练与下游任务的训练分离开来,可以利用有限的计算资源分析更大的分子图(例如全原子分辨率的小蛋白质)。通过这些方式,geom2vec 消除了人工特征选择的需要,提高了模拟分析的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using pretrained graph neural networks with token mixers as geometric featurizers for conformational dynamics.

Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning. We show how the learned GNN representations can capture interpretable relationships between structural units (tokens) by combining them with expressive token mixers. Importantly, decoupling training the GNNs from training for downstream tasks enables analysis of larger molecular graphs (such as small proteins at all-atom resolution) with limited computational resources. In these ways, geom2vec eliminates the need for manual feature selection and increases the robustness of simulation analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信