{"title":"子宫内膜异位症中铁下垂和免疫滤过相互作用的转录组学分析及新治疗靶点的鉴定。","authors":"Sonia Chadha","doi":"10.1016/j.compbiolchem.2025.108343","DOIUrl":null,"url":null,"abstract":"<div><div>Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and <em>TP53</em>, <em>HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC</em> and <em>FANCD2</em> were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16–5p and hsa-miR-17–5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16–5p, hsa-miR-17–5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108343"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets\",\"authors\":\"Sonia Chadha\",\"doi\":\"10.1016/j.compbiolchem.2025.108343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and <em>TP53</em>, <em>HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC</em> and <em>FANCD2</em> were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16–5p and hsa-miR-17–5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16–5p, hsa-miR-17–5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"115 \",\"pages\":\"Article 108343\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927125000039\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets
Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16–5p and hsa-miR-17–5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16–5p, hsa-miR-17–5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.