肌肉特异性核糖体蛋白基因 RPL3L 的隐性但具有损伤性的等位基因驱动新生儿扩张型心肌病。

Michael R Murphy, Mythily Ganapathi, Teresa M Lee, Joshua M Fisher, Megha V Patel, Parul Jayakar, Amanda Buchanan, Alyssa L Rippert, Rebecca C Ahrens-Nicklas, Divya Nair, Rajesh K Soni, Yue Yin, Feiyue Yang, Muredach P Reilly, Wendy K Chung, Xuebing Wu
{"title":"肌肉特异性核糖体蛋白基因 RPL3L 的隐性但具有损伤性的等位基因驱动新生儿扩张型心肌病。","authors":"Michael R Murphy, Mythily Ganapathi, Teresa M Lee, Joshua M Fisher, Megha V Patel, Parul Jayakar, Amanda Buchanan, Alyssa L Rippert, Rebecca C Ahrens-Nicklas, Divya Nair, Rajesh K Soni, Yue Yin, Feiyue Yang, Muredach P Reilly, Wendy K Chung, Xuebing Wu","doi":"10.1101/2025.01.02.630345","DOIUrl":null,"url":null,"abstract":"<p><p>The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role <sup>1-3</sup> . Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by severe dilated cardiomyopathy when both copies of the gene <i>RPL3L</i> are mutated <sup>4-9</sup> . RPL3L is a muscle-specific paralog <sup>1-3</sup> of the ubiquitous ribosomal protein L3 (RPL3), which makes the closest contact of any protein to the ribosome's RNA-based catalytic center <sup>10</sup> . <i>RPL3L</i> -linked heart failure represents the only known human disease associated with tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood. Intriguingly, disease is linked to a large number of mostly missense variants in <i>RPL3L</i> , and <i>RPL3L</i> -knockout resulted in no severe heart defect in either human or mice <sup>3, 11-13</sup> , challenging the prevailing view that autosomal recessive diseases are caused by loss-of-function mutations. Here, we report three new cases of <i>RPL3L</i> -linked severe neonatal heart failure and present a unifying pathogenetic mechanism by which a large number of variants in the muscle-specific ribosome led to disease. Specifically, affected families often carry one of two recurrent toxic gain-of-function variants alongside a family-specific putative loss-of-function variant. While the non-recurrent variants often trigger partial compensation of <i>RPL3</i> similar to <i>Rpl3l</i> -knockout mice, both recurrent variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD1 <sup>14-16</sup> and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings provide critical insights for genetic screening and therapeutic development of neonatal heart failure. Our results suggest that gain-of-toxicity mechanisms may be more prevalent in autosomal recessive diseases, and a combination of gain-of-toxicity and loss-of-function mechanisms could underlie many diseases involving genes with paralogs.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pathogenetic mechanisms of muscle-specific ribosomes in dilated cardiomyopathy.\",\"authors\":\"Michael R Murphy, Mythily Ganapathi, Teresa M Lee, Joshua M Fisher, Megha V Patel, Parul Jayakar, Amanda Buchanan, Alyssa L Rippert, Rebecca C Ahrens-Nicklas, Divya Nair, Rajesh K Soni, Yue Yin, Feiyue Yang, Muredach P Reilly, Wendy K Chung, Xuebing Wu\",\"doi\":\"10.1101/2025.01.02.630345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role <sup>1-3</sup> . Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by severe dilated cardiomyopathy when both copies of the gene <i>RPL3L</i> are mutated <sup>4-9</sup> . RPL3L is a muscle-specific paralog <sup>1-3</sup> of the ubiquitous ribosomal protein L3 (RPL3), which makes the closest contact of any protein to the ribosome's RNA-based catalytic center <sup>10</sup> . <i>RPL3L</i> -linked heart failure represents the only known human disease associated with tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood. Intriguingly, disease is linked to a large number of mostly missense variants in <i>RPL3L</i> , and <i>RPL3L</i> -knockout resulted in no severe heart defect in either human or mice <sup>3, 11-13</sup> , challenging the prevailing view that autosomal recessive diseases are caused by loss-of-function mutations. Here, we report three new cases of <i>RPL3L</i> -linked severe neonatal heart failure and present a unifying pathogenetic mechanism by which a large number of variants in the muscle-specific ribosome led to disease. Specifically, affected families often carry one of two recurrent toxic gain-of-function variants alongside a family-specific putative loss-of-function variant. While the non-recurrent variants often trigger partial compensation of <i>RPL3</i> similar to <i>Rpl3l</i> -knockout mice, both recurrent variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD1 <sup>14-16</sup> and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings provide critical insights for genetic screening and therapeutic development of neonatal heart failure. Our results suggest that gain-of-toxicity mechanisms may be more prevalent in autosomal recessive diseases, and a combination of gain-of-toxicity and loss-of-function mechanisms could underlie many diseases involving genes with paralogs.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.01.02.630345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.02.630345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心脏在其肌肉细胞中使用一种特殊的核糖体将遗传信息转化为蛋白质,这是一种具有难以捉摸的生理作用的基本适应。RPL3L是一种肌肉特异性核糖体蛋白,取代了心脏核糖体中普遍存在的RPL3,这一发现强调了它的重要性,因为新生儿患者患有通常由RPL3L罕见的复合杂合变异引起的致命心力衰竭。RPL3L相关的心力衰竭是唯一已知的由组织特异性核糖体突变引起的人类疾病,尽管报道的病例越来越多,但其潜在的发病机制仍然知之甚少。虽然常染色体隐性遗传模式提示功能丧失机制,但Rpl3l基因敲除小鼠仅表现出轻度表型,这归因于普遍存在的Rpl3的上调。有趣的是,已经确定了活的RPL3L基因敲除。在这里,我们报告了两例与RPL3L相关的新生儿严重心力衰竭的新病例,并通过对群体遗传数据、患者心脏组织和表达RPL3L变异的等基因细胞的综合分析,揭示了一种不寻常的发病机制。我们的研究结果表明,患者心脏缺乏足够的RPL3代偿。此外,与常染色体隐性疾病相关的简单功能丧失机制相反,RPL3L相关疾病是由毒性获得和功能丧失的组合驱动的。大多数患者携带复发性毒性错义变异和非复发性功能丧失变异。与Rpl3l敲除小鼠类似,非复发性变异触发RPL3的部分代偿。相反,反复出现的错义变异体对RPL3/RPL3L伴侣GRWD1和60S生物发生因子的亲和力增加,在细胞核中隔离28S rRNA,破坏核糖体的生物发生,并引发严重的细胞毒性,这种毒性超出了核糖体的损失。这些发现阐明了新生儿心力衰竭中肌肉特异性核糖体功能障碍的发病机制,为基因筛查和治疗开发提供了重要见解。我们的研究结果还表明,获得毒性机制可能在常染色体隐性疾病中更为普遍,特别是那些涉及同源基因的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathogenetic mechanisms of muscle-specific ribosomes in dilated cardiomyopathy.

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role 1-3 . Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by severe dilated cardiomyopathy when both copies of the gene RPL3L are mutated 4-9 . RPL3L is a muscle-specific paralog 1-3 of the ubiquitous ribosomal protein L3 (RPL3), which makes the closest contact of any protein to the ribosome's RNA-based catalytic center 10 . RPL3L -linked heart failure represents the only known human disease associated with tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood. Intriguingly, disease is linked to a large number of mostly missense variants in RPL3L , and RPL3L -knockout resulted in no severe heart defect in either human or mice 3, 11-13 , challenging the prevailing view that autosomal recessive diseases are caused by loss-of-function mutations. Here, we report three new cases of RPL3L -linked severe neonatal heart failure and present a unifying pathogenetic mechanism by which a large number of variants in the muscle-specific ribosome led to disease. Specifically, affected families often carry one of two recurrent toxic gain-of-function variants alongside a family-specific putative loss-of-function variant. While the non-recurrent variants often trigger partial compensation of RPL3 similar to Rpl3l -knockout mice, both recurrent variants exhibit increased affinity for the RPL3/RPL3L chaperone GRWD1 14-16 and 60S biogenesis factors, sequester 28S rRNA in the nucleus, disrupt ribosome biogenesis, and trigger severe cellular toxicity that extends beyond the loss of ribosomes. These findings provide critical insights for genetic screening and therapeutic development of neonatal heart failure. Our results suggest that gain-of-toxicity mechanisms may be more prevalent in autosomal recessive diseases, and a combination of gain-of-toxicity and loss-of-function mechanisms could underlie many diseases involving genes with paralogs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信