在3xTg AD小鼠模型中,来自低风险阿尔茨海默病的人的粪便微生物群移植(FMT)改善了短期识别记忆并增加了神经炎症

IF 2.4 4区 心理学 Q2 BEHAVIORAL SCIENCES
Claire Chevalier, Benjamin B. Tournier, Moira Marizzoni, Rahel Park, Arthur Paquis, Kelly Ceyzériat, Aurélien M. Badina, Aurelien Lathuiliere, Samantha Saleri, Floriana De Cillis, Annamaria Cattaneo, Philippe Millet, Giovanni B. Frisoni
{"title":"在3xTg AD小鼠模型中,来自低风险阿尔茨海默病的人的粪便微生物群移植(FMT)改善了短期识别记忆并增加了神经炎症","authors":"Claire Chevalier,&nbsp;Benjamin B. Tournier,&nbsp;Moira Marizzoni,&nbsp;Rahel Park,&nbsp;Arthur Paquis,&nbsp;Kelly Ceyzériat,&nbsp;Aurélien M. Badina,&nbsp;Aurelien Lathuiliere,&nbsp;Samantha Saleri,&nbsp;Floriana De Cillis,&nbsp;Annamaria Cattaneo,&nbsp;Philippe Millet,&nbsp;Giovanni B. Frisoni","doi":"10.1111/gbb.70012","DOIUrl":null,"url":null,"abstract":"<p>Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT). Behavioral assessments included novel object recognition (NOR), Y-maze, open-field, and elevated plus maze tests; brain pathology (amyloid and tau), neuroinflammation (in situ autoradiography of the 18 kDa translocator protein in the hippocampus); and gut microbiota were analyzed. APOEe2-FMT improved short-term memory in the NOR test compared to AD-FMT, without significant changes in other behavioral tests. This was associated with increased neuroinflammation in the hippocampus, but no effect was detected on brain amyloidosis and tauopathy. Specific genera, such as <i>Parabacteroides</i> and <i>Prevotellaceae_UGC001</i>, were enriched in the APOEe2-FMT group and associated with neuroinflammation, while genera like <i>Desulfovibrio</i> were reduced and linked to decreased neuroinflammation. Gut microbiota from a donor with a protective factor against AD improved short-term memory and induced neuroinflammation in regions strategic to AD. The association of several genera with neuroinflammation in the APOEe2-FMT group suggests a collegial effect of the transplanted microbiome rather than a single-microbe driver effect. These data support an association between gut bacteria, glial cell activation, and cognitive function in AD.</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"24 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725982/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fecal Microbiota Transplantation (FMT) From a Human at Low Risk for Alzheimer's Disease Improves Short-Term Recognition Memory and Increases Neuroinflammation in a 3xTg AD Mouse Model\",\"authors\":\"Claire Chevalier,&nbsp;Benjamin B. Tournier,&nbsp;Moira Marizzoni,&nbsp;Rahel Park,&nbsp;Arthur Paquis,&nbsp;Kelly Ceyzériat,&nbsp;Aurélien M. Badina,&nbsp;Aurelien Lathuiliere,&nbsp;Samantha Saleri,&nbsp;Floriana De Cillis,&nbsp;Annamaria Cattaneo,&nbsp;Philippe Millet,&nbsp;Giovanni B. Frisoni\",\"doi\":\"10.1111/gbb.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT). Behavioral assessments included novel object recognition (NOR), Y-maze, open-field, and elevated plus maze tests; brain pathology (amyloid and tau), neuroinflammation (in situ autoradiography of the 18 kDa translocator protein in the hippocampus); and gut microbiota were analyzed. APOEe2-FMT improved short-term memory in the NOR test compared to AD-FMT, without significant changes in other behavioral tests. This was associated with increased neuroinflammation in the hippocampus, but no effect was detected on brain amyloidosis and tauopathy. Specific genera, such as <i>Parabacteroides</i> and <i>Prevotellaceae_UGC001</i>, were enriched in the APOEe2-FMT group and associated with neuroinflammation, while genera like <i>Desulfovibrio</i> were reduced and linked to decreased neuroinflammation. Gut microbiota from a donor with a protective factor against AD improved short-term memory and induced neuroinflammation in regions strategic to AD. The association of several genera with neuroinflammation in the APOEe2-FMT group suggests a collegial effect of the transplanted microbiome rather than a single-microbe driver effect. These data support an association between gut bacteria, glial cell activation, and cognitive function in AD.</p>\",\"PeriodicalId\":50426,\"journal\":{\"name\":\"Genes Brain and Behavior\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70012\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.70012","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类微生物群相关的小鼠模型,使用来自人类供体的粪便微生物群移植(FMT),有助于探索微生物群在阿尔茨海默病(AD)等疾病中的作用。本研究探讨了具有AD保护因子的供体肠道细菌如何影响AD小鼠模型中的行为和脑病理。雌性3xTgAD小鼠接受为期2个月的每周FMT,分别来自(i) 80岁AD患者(AD-FMT), (ii)认知健康的73岁APOEe2等位基因(APOEe2-FMT), (iii) 22岁健康供体(Young-FMT)和(iv)未治疗小鼠(mice -FMT)。行为评估包括新目标识别(NOR)、y型迷宫、开放区域和高架迷宫测试;脑部病理(淀粉样蛋白和tau蛋白),神经炎症(海马18kda转运蛋白的原位放射自显影);并分析了肠道菌群。与AD-FMT相比,APOEe2-FMT改善了NOR测试中的短期记忆,而在其他行为测试中没有显著变化。这与海马神经炎症增加有关,但对脑淀粉样变性和牛头病没有影响。特定的属,如Parabacteroides和Prevotellaceae_UGC001,在APOEe2-FMT组中富集并与神经炎症有关,而像Desulfovibrio这样的属则减少并与神经炎症减少有关。来自具有AD保护因子的供体的肠道微生物群改善了AD的短期记忆并诱导了AD战略区域的神经炎症。APOEe2-FMT组中几个属与神经炎症的关联表明,移植微生物组的共同效应,而不是单一微生物驱动效应。这些数据支持肠道细菌、神经胶质细胞激活和AD患者认知功能之间的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fecal Microbiota Transplantation (FMT) From a Human at Low Risk for Alzheimer's Disease Improves Short-Term Recognition Memory and Increases Neuroinflammation in a 3xTg AD Mouse Model

Fecal Microbiota Transplantation (FMT) From a Human at Low Risk for Alzheimer's Disease Improves Short-Term Recognition Memory and Increases Neuroinflammation in a 3xTg AD Mouse Model

Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT). Behavioral assessments included novel object recognition (NOR), Y-maze, open-field, and elevated plus maze tests; brain pathology (amyloid and tau), neuroinflammation (in situ autoradiography of the 18 kDa translocator protein in the hippocampus); and gut microbiota were analyzed. APOEe2-FMT improved short-term memory in the NOR test compared to AD-FMT, without significant changes in other behavioral tests. This was associated with increased neuroinflammation in the hippocampus, but no effect was detected on brain amyloidosis and tauopathy. Specific genera, such as Parabacteroides and Prevotellaceae_UGC001, were enriched in the APOEe2-FMT group and associated with neuroinflammation, while genera like Desulfovibrio were reduced and linked to decreased neuroinflammation. Gut microbiota from a donor with a protective factor against AD improved short-term memory and induced neuroinflammation in regions strategic to AD. The association of several genera with neuroinflammation in the APOEe2-FMT group suggests a collegial effect of the transplanted microbiome rather than a single-microbe driver effect. These data support an association between gut bacteria, glial cell activation, and cognitive function in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes Brain and Behavior
Genes Brain and Behavior 医学-行为科学
CiteScore
6.80
自引率
4.00%
发文量
62
审稿时长
4-8 weeks
期刊介绍: Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes. Genes Brain and Behavior is pleased to offer the following features: 8 issues per year online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions A large and varied editorial board comprising of international specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信