大型语言模型诊断生成中的不确定性估计:下一词概率不是测试前概率。

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-01-10 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae154
Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy Miller, Danielle S Bitterman, Guanhua Chen, Anoop Mayampurath, Matthew M Churpek, Majid Afshar
{"title":"大型语言模型诊断生成中的不确定性估计:下一词概率不是测试前概率。","authors":"Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy Miller, Danielle S Bitterman, Guanhua Chen, Anoop Mayampurath, Matthew M Churpek, Majid Afshar","doi":"10.1093/jamiaopen/ooae154","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate large language models (LLMs) for pre-test diagnostic probability estimation and compare their uncertainty estimation performance with a traditional machine learning classifier.</p><p><strong>Materials and methods: </strong>We assessed 2 instruction-tuned LLMs, Mistral-7B-Instruct and Llama3-70B-chat-hf, on predicting binary outcomes for Sepsis, Arrhythmia, and Congestive Heart Failure (CHF) using electronic health record (EHR) data from 660 patients. Three uncertainty estimation methods-Verbalized Confidence, Token Logits, and LLM Embedding+XGB-were compared against an eXtreme Gradient Boosting (XGB) classifier trained on raw EHR data. Performance metrics included AUROC and Pearson correlation between predicted probabilities.</p><p><strong>Results: </strong>The XGB classifier outperformed the LLM-based methods across all tasks. LLM Embedding+XGB showed the closest performance to the XGB baseline, while Verbalized Confidence and Token Logits underperformed.</p><p><strong>Discussion: </strong>These findings, consistent across multiple models and demographic groups, highlight the limitations of current LLMs in providing reliable pre-test probability estimations and underscore the need for improved calibration and bias mitigation strategies. Future work should explore hybrid approaches that integrate LLMs with numerical reasoning modules and calibrated embeddings to enhance diagnostic accuracy and ensure fairer predictions across diverse populations.</p><p><strong>Conclusions: </strong>LLMs demonstrate potential but currently fall short in estimating diagnostic probabilities compared to traditional machine learning classifiers trained on structured EHR data. Further improvements are needed for reliable clinical use.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae154"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723528/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncertainty estimation in diagnosis generation from large language models: next-word probability is not pre-test probability.\",\"authors\":\"Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy Miller, Danielle S Bitterman, Guanhua Chen, Anoop Mayampurath, Matthew M Churpek, Majid Afshar\",\"doi\":\"10.1093/jamiaopen/ooae154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To evaluate large language models (LLMs) for pre-test diagnostic probability estimation and compare their uncertainty estimation performance with a traditional machine learning classifier.</p><p><strong>Materials and methods: </strong>We assessed 2 instruction-tuned LLMs, Mistral-7B-Instruct and Llama3-70B-chat-hf, on predicting binary outcomes for Sepsis, Arrhythmia, and Congestive Heart Failure (CHF) using electronic health record (EHR) data from 660 patients. Three uncertainty estimation methods-Verbalized Confidence, Token Logits, and LLM Embedding+XGB-were compared against an eXtreme Gradient Boosting (XGB) classifier trained on raw EHR data. Performance metrics included AUROC and Pearson correlation between predicted probabilities.</p><p><strong>Results: </strong>The XGB classifier outperformed the LLM-based methods across all tasks. LLM Embedding+XGB showed the closest performance to the XGB baseline, while Verbalized Confidence and Token Logits underperformed.</p><p><strong>Discussion: </strong>These findings, consistent across multiple models and demographic groups, highlight the limitations of current LLMs in providing reliable pre-test probability estimations and underscore the need for improved calibration and bias mitigation strategies. Future work should explore hybrid approaches that integrate LLMs with numerical reasoning modules and calibrated embeddings to enhance diagnostic accuracy and ensure fairer predictions across diverse populations.</p><p><strong>Conclusions: </strong>LLMs demonstrate potential but currently fall short in estimating diagnostic probabilities compared to traditional machine learning classifiers trained on structured EHR data. Further improvements are needed for reliable clinical use.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"8 1\",\"pages\":\"ooae154\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723528/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooae154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估大型语言模型(LLMs)在测试前诊断概率估计中的应用,并将其不确定性估计性能与传统机器学习分类器进行比较。材料和方法:我们利用660例患者的电子健康记录(EHR)数据,评估了2种指令调整LLMs (Mistral-7B-Instruct和Llama3-70B-chat-hf)预测败血症、心律失常和充血性心力衰竭(CHF)的二元预后。将三种不确定性估计方法——语言置信度、令牌Logits和LLM嵌入+XGB——与基于原始EHR数据训练的极限梯度增强(XGB)分类器进行了比较。性能指标包括AUROC和预测概率之间的Pearson相关性。结果:XGB分类器在所有任务中都优于基于llm的方法。LLM嵌入+XGB显示出最接近XGB基线的性能,而Verbalized Confidence和Token Logits表现不佳。讨论:这些发现在多个模型和人口群体中是一致的,突出了当前llm在提供可靠的检验前概率估计方面的局限性,并强调了改进校准和减少偏差策略的必要性。未来的工作应该探索将法学硕士与数值推理模块和校准嵌入相结合的混合方法,以提高诊断准确性,并确保在不同人群中进行更公平的预测。结论:与基于结构化电子病历数据训练的传统机器学习分类器相比,llm显示出了潜力,但目前在估计诊断概率方面还存在不足。为了可靠的临床应用,需要进一步的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty estimation in diagnosis generation from large language models: next-word probability is not pre-test probability.

Objective: To evaluate large language models (LLMs) for pre-test diagnostic probability estimation and compare their uncertainty estimation performance with a traditional machine learning classifier.

Materials and methods: We assessed 2 instruction-tuned LLMs, Mistral-7B-Instruct and Llama3-70B-chat-hf, on predicting binary outcomes for Sepsis, Arrhythmia, and Congestive Heart Failure (CHF) using electronic health record (EHR) data from 660 patients. Three uncertainty estimation methods-Verbalized Confidence, Token Logits, and LLM Embedding+XGB-were compared against an eXtreme Gradient Boosting (XGB) classifier trained on raw EHR data. Performance metrics included AUROC and Pearson correlation between predicted probabilities.

Results: The XGB classifier outperformed the LLM-based methods across all tasks. LLM Embedding+XGB showed the closest performance to the XGB baseline, while Verbalized Confidence and Token Logits underperformed.

Discussion: These findings, consistent across multiple models and demographic groups, highlight the limitations of current LLMs in providing reliable pre-test probability estimations and underscore the need for improved calibration and bias mitigation strategies. Future work should explore hybrid approaches that integrate LLMs with numerical reasoning modules and calibrated embeddings to enhance diagnostic accuracy and ensure fairer predictions across diverse populations.

Conclusions: LLMs demonstrate potential but currently fall short in estimating diagnostic probabilities compared to traditional machine learning classifiers trained on structured EHR data. Further improvements are needed for reliable clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信