区分慢性炎症性脱髓鞘性多神经病变与模拟疾病:统计模型的作用。

IF 3.9 3区 医学 Q1 CLINICAL NEUROLOGY
Grace Swart, Michael P Skolka, Shahar Shelly, Richard A Lewis, Jeffrey A Allen, Divyanshu Dubey, Zhiyv Niu, Judith Spies, Ruple S Laughlin, Smathorn Thakolwiboon, Ashley R Santilli, Hebatallah Rashed, Igal Mirman, Alexander Swart, Sarah E Berini, Kamal Shouman, Marcus V Pinto, Michelle L Mauermann, John R Mills, P James B Dyck, William S Harmsen, Jay Mandrekar, Christopher J Klein
{"title":"区分慢性炎症性脱髓鞘性多神经病变与模拟疾病:统计模型的作用。","authors":"Grace Swart, Michael P Skolka, Shahar Shelly, Richard A Lewis, Jeffrey A Allen, Divyanshu Dubey, Zhiyv Niu, Judith Spies, Ruple S Laughlin, Smathorn Thakolwiboon, Ashley R Santilli, Hebatallah Rashed, Igal Mirman, Alexander Swart, Sarah E Berini, Kamal Shouman, Marcus V Pinto, Michelle L Mauermann, John R Mills, P James B Dyck, William S Harmsen, Jay Mandrekar, Christopher J Klein","doi":"10.1111/jns.12682","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.</p><p><strong>Methods: </strong>Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables. The model was generated and validated utilizing total CIDP (n = 129) and mimics (n = 309); including (1) IgG4-nodopathies; (2) POEMS (polyneuropathy-organomegaly-endocrinopathy-monoclonal protein-skin changes); (3) anti-myelin-associated-glycoprotein; (4) paraneoplastic; (5) Waldenström B-cell lymphoma; (6) diabetic neuropathies; (7) amyloidosis; (8) Charcot-Marie-Tooth; (9) motor neuropathies/neuronopathies; and (10) idiopathic-inflammatory-myopathies.</p><p><strong>Results: </strong>We analyzed 9282 clinical and 51 408 electrophysiological data points. Univariate analysis identified 11 of 26 clinical variables with significant odds ratios. A multivariate regression model using four clinical and two electrophysiologic variables achieved 93% area-under-curve (95% CI 91-95): progression over 8 weeks (OR 40.66, 95% CI 5.31-311.36), absent autonomic involvement (OR 17.82, 95% CI 2.93-108.24), absent muscle atrophy (OR 16.65, 95% CI 3.27-84.73), proximal weakness (OR 3.63, 95% CI 1.58-8.33), ulnar motor conduction velocity slowing < 35.7 m/s (OR 5.21, 95% CI 2.13-12.76), and ulnar motor conduction block (OR 13.37, 95% CI 2.47-72.40). A web-based probability calculator (https://news.mayocliniclabs.com/cidp-calculator/) was developed, with 100% sensitivity and 68% specificity at a 92% probability threshold. Specificity improved to 93% when considering \"red flags,\" electrophysiologic criteria, and laboratory testing.</p><p><strong>Interpretation: </strong>A probability calculator using clinical electrophysiological variables assists CIDP differentiation from mimics, with scores below 92% unlikely to have CIDP. The highest specificity is achieved by considering clinical \"red flags,\" electrophysiologic demyelination, and laboratory testing.</p>","PeriodicalId":17451,"journal":{"name":"Journal of the Peripheral Nervous System","volume":"30 1","pages":"e12682"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinguishing Chronic Inflammatory Demyelinating Polyneuropathy From Mimic Disorders: The Role of Statistical Modeling.\",\"authors\":\"Grace Swart, Michael P Skolka, Shahar Shelly, Richard A Lewis, Jeffrey A Allen, Divyanshu Dubey, Zhiyv Niu, Judith Spies, Ruple S Laughlin, Smathorn Thakolwiboon, Ashley R Santilli, Hebatallah Rashed, Igal Mirman, Alexander Swart, Sarah E Berini, Kamal Shouman, Marcus V Pinto, Michelle L Mauermann, John R Mills, P James B Dyck, William S Harmsen, Jay Mandrekar, Christopher J Klein\",\"doi\":\"10.1111/jns.12682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.</p><p><strong>Methods: </strong>Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables. The model was generated and validated utilizing total CIDP (n = 129) and mimics (n = 309); including (1) IgG4-nodopathies; (2) POEMS (polyneuropathy-organomegaly-endocrinopathy-monoclonal protein-skin changes); (3) anti-myelin-associated-glycoprotein; (4) paraneoplastic; (5) Waldenström B-cell lymphoma; (6) diabetic neuropathies; (7) amyloidosis; (8) Charcot-Marie-Tooth; (9) motor neuropathies/neuronopathies; and (10) idiopathic-inflammatory-myopathies.</p><p><strong>Results: </strong>We analyzed 9282 clinical and 51 408 electrophysiological data points. Univariate analysis identified 11 of 26 clinical variables with significant odds ratios. A multivariate regression model using four clinical and two electrophysiologic variables achieved 93% area-under-curve (95% CI 91-95): progression over 8 weeks (OR 40.66, 95% CI 5.31-311.36), absent autonomic involvement (OR 17.82, 95% CI 2.93-108.24), absent muscle atrophy (OR 16.65, 95% CI 3.27-84.73), proximal weakness (OR 3.63, 95% CI 1.58-8.33), ulnar motor conduction velocity slowing < 35.7 m/s (OR 5.21, 95% CI 2.13-12.76), and ulnar motor conduction block (OR 13.37, 95% CI 2.47-72.40). A web-based probability calculator (https://news.mayocliniclabs.com/cidp-calculator/) was developed, with 100% sensitivity and 68% specificity at a 92% probability threshold. Specificity improved to 93% when considering \\\"red flags,\\\" electrophysiologic criteria, and laboratory testing.</p><p><strong>Interpretation: </strong>A probability calculator using clinical electrophysiological variables assists CIDP differentiation from mimics, with scores below 92% unlikely to have CIDP. The highest specificity is achieved by considering clinical \\\"red flags,\\\" electrophysiologic demyelination, and laboratory testing.</p>\",\"PeriodicalId\":17451,\"journal\":{\"name\":\"Journal of the Peripheral Nervous System\",\"volume\":\"30 1\",\"pages\":\"e12682\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Peripheral Nervous System\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jns.12682\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Peripheral Nervous System","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jns.12682","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:慢性炎症性脱髓鞘性多根神经病变(CIDP)与模拟性疾病难以区分,常因误诊而导致IVIG的过度使用。我们评估了一种临床电生理模型,以促进CIDP与模拟神经病变的预测。方法:根据欧洲神经病学学会/周围神经学会(EAN/PNS) 2021年CIDP指南,我们导出了26个临床和144个神经传导变量。利用总CIDP (n = 129)和mimics (n = 309)生成模型并进行验证;包括(1)IgG4-nodopathies;(2) POEMS(多发性神经病-器官肿大-内分泌病-单克隆蛋白-皮肤变化);(3) anti-myelin-associated-glycoprotein;(4)多种;(5) Waldenström b细胞淋巴瘤;(6)糖尿病性神经病;(7)淀粉样变;(8);腓骨肌萎缩(9)运动神经病/神经病变;(10)特发性炎症性肌病。结果:我们分析了9282个临床和51 408个电生理数据点。单因素分析发现26个临床变量中有11个具有显著优势比。使用4个临床和2个电生理变量的多变量回归模型达到了93%的曲线下面积(95% CI 91-95): 8周内的进展(OR 40.66, 95% CI 5.31-311.36),无自主神经受累(OR 17.82, 95% CI 2.93-108.24),无肌肉萎缩(OR 16.65, 95% CI 3.27-84.73),近端无力(OR 3.63, 95% CI 1.58-8.33),尺侧运动传导速度减慢使用临床电生理变量的概率计算器有助于将CIDP与模拟患者区分开来,得分低于92%的患者不太可能患有CIDP。最高的特异性是通过考虑临床“危险信号”、电生理脱髓鞘和实验室检测来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguishing Chronic Inflammatory Demyelinating Polyneuropathy From Mimic Disorders: The Role of Statistical Modeling.

Background and aims: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.

Methods: Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables. The model was generated and validated utilizing total CIDP (n = 129) and mimics (n = 309); including (1) IgG4-nodopathies; (2) POEMS (polyneuropathy-organomegaly-endocrinopathy-monoclonal protein-skin changes); (3) anti-myelin-associated-glycoprotein; (4) paraneoplastic; (5) Waldenström B-cell lymphoma; (6) diabetic neuropathies; (7) amyloidosis; (8) Charcot-Marie-Tooth; (9) motor neuropathies/neuronopathies; and (10) idiopathic-inflammatory-myopathies.

Results: We analyzed 9282 clinical and 51 408 electrophysiological data points. Univariate analysis identified 11 of 26 clinical variables with significant odds ratios. A multivariate regression model using four clinical and two electrophysiologic variables achieved 93% area-under-curve (95% CI 91-95): progression over 8 weeks (OR 40.66, 95% CI 5.31-311.36), absent autonomic involvement (OR 17.82, 95% CI 2.93-108.24), absent muscle atrophy (OR 16.65, 95% CI 3.27-84.73), proximal weakness (OR 3.63, 95% CI 1.58-8.33), ulnar motor conduction velocity slowing < 35.7 m/s (OR 5.21, 95% CI 2.13-12.76), and ulnar motor conduction block (OR 13.37, 95% CI 2.47-72.40). A web-based probability calculator (https://news.mayocliniclabs.com/cidp-calculator/) was developed, with 100% sensitivity and 68% specificity at a 92% probability threshold. Specificity improved to 93% when considering "red flags," electrophysiologic criteria, and laboratory testing.

Interpretation: A probability calculator using clinical electrophysiological variables assists CIDP differentiation from mimics, with scores below 92% unlikely to have CIDP. The highest specificity is achieved by considering clinical "red flags," electrophysiologic demyelination, and laboratory testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
7.90%
发文量
45
审稿时长
>12 weeks
期刊介绍: The Journal of the Peripheral Nervous System is the official journal of the Peripheral Nerve Society. Founded in 1996, it is the scientific journal of choice for clinicians, clinical scientists and basic neuroscientists interested in all aspects of biology and clinical research of peripheral nervous system disorders. The Journal of the Peripheral Nervous System is a peer-reviewed journal that publishes high quality articles on cell and molecular biology, genomics, neuropathic pain, clinical research, trials, and unique case reports on inherited and acquired peripheral neuropathies. Original articles are organized according to the topic in one of four specific areas: Mechanisms of Disease, Genetics, Clinical Research, and Clinical Trials. The journal also publishes regular review papers on hot topics and Special Issues on basic, clinical, or assembled research in the field of peripheral nervous system disorders. Authors interested in contributing a review-type article or a Special Issue should contact the Editorial Office to discuss the scope of the proposed article with the Editor-in-Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信