Yang Yang , Yang Shao , Qi Dai , Yuxi Zhang , Yongxin Sun , Kunpeng Wang , Aihua Xu
{"title":"转录因子AP-2 β是重复经脊髓磁刺激治疗脊髓损伤的潜在靶点,可减轻炎症,减轻脊髓损伤。","authors":"Yang Yang , Yang Shao , Qi Dai , Yuxi Zhang , Yongxin Sun , Kunpeng Wang , Aihua Xu","doi":"10.1016/j.expneurol.2025.115144","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"386 ","pages":"Article 115144"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury\",\"authors\":\"Yang Yang , Yang Shao , Qi Dai , Yuxi Zhang , Yongxin Sun , Kunpeng Wang , Aihua Xu\",\"doi\":\"10.1016/j.expneurol.2025.115144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"386 \",\"pages\":\"Article 115144\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625000081\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000081","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury
Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI. The result showed that TFAP2B was downregulated following SCI, while significant upregulation after rTSMS treatment, suggesting its pivotal role in neuronal repair. Overexpression of TFAP2B improved Basso Beattie and Bresnahan (BBB) score and athletic ability, and decreased cell apoptosis in SCI rats. Additionally, overexpression of TFAP2B reduced the expression of Iba1 and GFAP in spinal cord, and the expression of PDGFrβ was also reduced in SCI rats after TFAP2B overexpression. Knockdown of TFAP2B reverses the effect of rTSMS treatment in SCI. We found that rTSMS alleviate osteoporosis caused by SCI, resulting in increased BMD, BV/TV, and Tb.Th. rTSMS treatment lowered the RANKL/OPG ratio. In all, our study illustrated TFAP2B is a downstream target of rTSMS for the treatment of SCI, and overexpression of TFAP2B enhanced the therapeutic effect of rTSMS.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.