{"title":"OGFr过表达通过激活P16和P21抑制HepG2细胞的增殖和迁移,发挥抗肝癌作用。","authors":"Zhezhu Jin, Yongjun Jin","doi":"10.5603/fhc.101622","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and the second leading cause of cancer death worldwide [19]. Opioid growth factor (OGF) has been shown to exhibit antitumour potential, binding to OGF receptor (OGFr). Naltrexone (NTX), an OGFr antagonist, is considered as a potential anti-cancer agent. However, the specific mechanism of how OGFr acts on HCC cells is yet to be elucidated.</p><p><strong>Materials and methods: </strong>HepG2 cells were inoculated into subcutaneous areas of nude mice's back (200 μL, 2.5×10⁷/mL) to establish HCC in vivo models. HepG2 cells were transfected with lentiviral plasmids containing short hairpin RNA (shRNA) targeting OGFr (sh-OGFr) or negative control shRNA (sh-NC), and OGFr over-expression (OE-OGFr) or over-expression negative control (OE-NC) plasmids. Subsequently, male BALB/c nude mice were randomized into Control, sh-NC, sh-OGFr, OE-NC, and OE-OGFr groups (n = 6). Tumour size was measured weekly for four weeks, TUNEL staining for apoptosis, and immunohistochemistry were performed. In vitro, HepG2 cells were randomized into OE-NC, OE-OGFr, and OE-OGFr+NTX (100 μmol/L) groups, and sh-NC, sh-OGFr, sh-OGFr+sh-P21, and sh-OGFr+sh-P16 groups. Cell viability by CCK8 assay, cell proliferation by EDU staining, cell migration by cell scratch, and Western blot were performed.</p><p><strong>Results: </strong>In vivo, sh-OGFr-transfected HepG2 cells increased tumour weight, volume, and Ki67 expression, decreased P21 and P16 expression, and did not affect apoptosis rate. The effect of OE-OGFr in HepG2 cells was completely the opposite. In vitro, OE-OGFr inhibited HepG2 cells' viability, proliferation, and migration, and further NTX intervention reversed its inhibitory effects. The transfection of HepG2 cells with sh-OGFr+sh-P21 and sh-OGFr+sh-P16 further enhanced the cell proliferation and migration abilities compared to the sh-OGFr group.</p><p><strong>Conclusions: </strong>OGFr overexpression may inhibit HCC progression by activating P16 and P21 expression to inhibit cell proliferation and migration, thereby providing new potential targets for HCC treatment.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":" ","pages":"180-190"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opioid growth factor receptor overexpression exerts anti-hepatocellular carcinoma effects by activating P16 and P21 to inhibit proliferation and migration of HepG2 cells.\",\"authors\":\"Zhezhu Jin, Yongjun Jin\",\"doi\":\"10.5603/fhc.101622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and the second leading cause of cancer death worldwide [19]. Opioid growth factor (OGF) has been shown to exhibit antitumour potential, binding to OGF receptor (OGFr). Naltrexone (NTX), an OGFr antagonist, is considered as a potential anti-cancer agent. However, the specific mechanism of how OGFr acts on HCC cells is yet to be elucidated.</p><p><strong>Materials and methods: </strong>HepG2 cells were inoculated into subcutaneous areas of nude mice's back (200 μL, 2.5×10⁷/mL) to establish HCC in vivo models. HepG2 cells were transfected with lentiviral plasmids containing short hairpin RNA (shRNA) targeting OGFr (sh-OGFr) or negative control shRNA (sh-NC), and OGFr over-expression (OE-OGFr) or over-expression negative control (OE-NC) plasmids. Subsequently, male BALB/c nude mice were randomized into Control, sh-NC, sh-OGFr, OE-NC, and OE-OGFr groups (n = 6). Tumour size was measured weekly for four weeks, TUNEL staining for apoptosis, and immunohistochemistry were performed. In vitro, HepG2 cells were randomized into OE-NC, OE-OGFr, and OE-OGFr+NTX (100 μmol/L) groups, and sh-NC, sh-OGFr, sh-OGFr+sh-P21, and sh-OGFr+sh-P16 groups. Cell viability by CCK8 assay, cell proliferation by EDU staining, cell migration by cell scratch, and Western blot were performed.</p><p><strong>Results: </strong>In vivo, sh-OGFr-transfected HepG2 cells increased tumour weight, volume, and Ki67 expression, decreased P21 and P16 expression, and did not affect apoptosis rate. The effect of OE-OGFr in HepG2 cells was completely the opposite. In vitro, OE-OGFr inhibited HepG2 cells' viability, proliferation, and migration, and further NTX intervention reversed its inhibitory effects. The transfection of HepG2 cells with sh-OGFr+sh-P21 and sh-OGFr+sh-P16 further enhanced the cell proliferation and migration abilities compared to the sh-OGFr group.</p><p><strong>Conclusions: </strong>OGFr overexpression may inhibit HCC progression by activating P16 and P21 expression to inhibit cell proliferation and migration, thereby providing new potential targets for HCC treatment.</p>\",\"PeriodicalId\":12322,\"journal\":{\"name\":\"Folia histochemica et cytobiologica\",\"volume\":\" \",\"pages\":\"180-190\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia histochemica et cytobiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5603/fhc.101622\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia histochemica et cytobiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/fhc.101622","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Opioid growth factor receptor overexpression exerts anti-hepatocellular carcinoma effects by activating P16 and P21 to inhibit proliferation and migration of HepG2 cells.
Introduction: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and the second leading cause of cancer death worldwide [19]. Opioid growth factor (OGF) has been shown to exhibit antitumour potential, binding to OGF receptor (OGFr). Naltrexone (NTX), an OGFr antagonist, is considered as a potential anti-cancer agent. However, the specific mechanism of how OGFr acts on HCC cells is yet to be elucidated.
Materials and methods: HepG2 cells were inoculated into subcutaneous areas of nude mice's back (200 μL, 2.5×10⁷/mL) to establish HCC in vivo models. HepG2 cells were transfected with lentiviral plasmids containing short hairpin RNA (shRNA) targeting OGFr (sh-OGFr) or negative control shRNA (sh-NC), and OGFr over-expression (OE-OGFr) or over-expression negative control (OE-NC) plasmids. Subsequently, male BALB/c nude mice were randomized into Control, sh-NC, sh-OGFr, OE-NC, and OE-OGFr groups (n = 6). Tumour size was measured weekly for four weeks, TUNEL staining for apoptosis, and immunohistochemistry were performed. In vitro, HepG2 cells were randomized into OE-NC, OE-OGFr, and OE-OGFr+NTX (100 μmol/L) groups, and sh-NC, sh-OGFr, sh-OGFr+sh-P21, and sh-OGFr+sh-P16 groups. Cell viability by CCK8 assay, cell proliferation by EDU staining, cell migration by cell scratch, and Western blot were performed.
Results: In vivo, sh-OGFr-transfected HepG2 cells increased tumour weight, volume, and Ki67 expression, decreased P21 and P16 expression, and did not affect apoptosis rate. The effect of OE-OGFr in HepG2 cells was completely the opposite. In vitro, OE-OGFr inhibited HepG2 cells' viability, proliferation, and migration, and further NTX intervention reversed its inhibitory effects. The transfection of HepG2 cells with sh-OGFr+sh-P21 and sh-OGFr+sh-P16 further enhanced the cell proliferation and migration abilities compared to the sh-OGFr group.
Conclusions: OGFr overexpression may inhibit HCC progression by activating P16 and P21 expression to inhibit cell proliferation and migration, thereby providing new potential targets for HCC treatment.
期刊介绍:
"Folia Histochemica et Cytobiologica" is an international, English-language journal publishing articles in the areas of histochemistry, cytochemistry and cell & tissue biology.
"Folia Histochemica et Cytobiologica" was established in 1963 under the title: ‘Folia Histochemica et Cytochemica’ by the Polish Histochemical and Cytochemical Society as a journal devoted to the rapidly developing fields of histochemistry and cytochemistry. In 1984, the profile of the journal was broadened to accommodate papers dealing with cell and tissue biology, and the title was accordingly changed to "Folia Histochemica et Cytobiologica".
"Folia Histochemica et Cytobiologica" is published quarterly, one volume a year, by the Polish Histochemical and Cytochemical Society.