基于遗传距离的PCA图谱信息重标。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nassim Nicholas Taleb , Pierre Zalloua , Khaled Elbassioni , Haralampos Hatzikirou , Andreas Henschel , Daniel E. Platt
{"title":"基于遗传距离的PCA图谱信息重标。","authors":"Nassim Nicholas Taleb ,&nbsp;Pierre Zalloua ,&nbsp;Khaled Elbassioni ,&nbsp;Haralampos Hatzikirou ,&nbsp;Andreas Henschel ,&nbsp;Daniel E. Platt","doi":"10.1016/j.csbj.2024.11.042","DOIUrl":null,"url":null,"abstract":"<div><div>Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI). Moreover, we show that in certain instances our proposed scaled PCA can improve cluster identification. Rescaling principal component-based distances using MI results in a representation of relative statistical associations when, as in genetics, it is applied on bit measurements between individuals' genomic mutual information. This entropy-rescaled PCA, while preserving order relationships (along a dimension), quantifies relative distances into information units, such as “bits”. We illustrate the effect of this rescaling using genomics data derived from world populations and describe how the interpretation of results is impacted.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 48-56"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719279/pdf/","citationCount":"0","resultStr":"{\"title\":\"Informational rescaling of PCA maps with application to genetic distance\",\"authors\":\"Nassim Nicholas Taleb ,&nbsp;Pierre Zalloua ,&nbsp;Khaled Elbassioni ,&nbsp;Haralampos Hatzikirou ,&nbsp;Andreas Henschel ,&nbsp;Daniel E. Platt\",\"doi\":\"10.1016/j.csbj.2024.11.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI). Moreover, we show that in certain instances our proposed scaled PCA can improve cluster identification. Rescaling principal component-based distances using MI results in a representation of relative statistical associations when, as in genetics, it is applied on bit measurements between individuals' genomic mutual information. This entropy-rescaled PCA, while preserving order relationships (along a dimension), quantifies relative distances into information units, such as “bits”. We illustrate the effect of this rescaling using genomics data derived from world populations and describe how the interpretation of results is impacted.</div></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"Pages 48-56\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719279/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037024004136\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004136","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

主成分分析(PCA)是一种强大的多变量工具,允许以低维表示方式投影数据。然而,这些低维投影上的数据点距离很难解释。在这里,我们提出了一种计算简单的启发式方法,将基于标准PCA的地图(当变量渐近高斯时)转换为基于熵的地图,其中距离基于互信息(MI)。此外,我们表明,在某些情况下,我们提出的尺度PCA可以提高聚类识别。当MI应用于个体基因组互信息之间的位测量时,使用MI重新缩放基于主成分的距离会产生相对统计关联的表示。这个熵重标的PCA在保持顺序关系(沿着一个维度)的同时,将相对距离量化为信息单位,如“比特”。我们使用来自世界人口的基因组学数据说明了这种重新缩放的影响,并描述了结果的解释如何受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Informational rescaling of PCA maps with application to genetic distance
Principal Component Analysis (PCA) is a powerful multivariate tool allowing the projection of data in low-dimensional representations. Nevertheless, datapoint distances on these low-dimensional projections are challenging to interpret. Here, we propose a computationally simple heuristic to transform a map based on standard PCA (when the variables are asymptotically Gaussian) into an entropy-based map where distances are based on mutual information (MI). Moreover, we show that in certain instances our proposed scaled PCA can improve cluster identification. Rescaling principal component-based distances using MI results in a representation of relative statistical associations when, as in genetics, it is applied on bit measurements between individuals' genomic mutual information. This entropy-rescaled PCA, while preserving order relationships (along a dimension), quantifies relative distances into information units, such as “bits”. We illustrate the effect of this rescaling using genomics data derived from world populations and describe how the interpretation of results is impacted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信