Israel Mateos-Aparicio-Ruiz , Anibal Pedraza , Jan Ulrich Becker , Nicola Altini , Jesus Salido , Gloria Bueno
{"title":"基于深度学习的肾小球硬化和肾小球肾炎表征的QuPath扩展。","authors":"Israel Mateos-Aparicio-Ruiz , Anibal Pedraza , Jan Ulrich Becker , Nicola Altini , Jesus Salido , Gloria Bueno","doi":"10.1016/j.csbj.2024.11.049","DOIUrl":null,"url":null,"abstract":"<div><div>The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool. This study proposes GNCnn, the first open-source QuPath extension specifically designed for nephropathology. It integrates deep learning models to provide nephropathologists with an accessible, automatic detector and classifier of glomeruli, the basic filtering units of the kidneys. The aim is to offer nephropathologists a freely available application to measure and analyze glomeruli to identify conditions such as glomerulosclerosis and glomerulonephritis. GNCnn offers a user-friendly interface that enables nephropathologists to detect glomeruli with high accuracy (Dice coefficient of 0.807) and categorize them as either sclerotic or non-sclerotic, achieving a balanced accuracy of 98.46%. Furthermore, it facilitates the classification of non-sclerotic glomeruli into 12 commonly diagnosed types of glomerulonephritis, with a top-3 balanced accuracy of 84.41%. GNCnn provides real-time updates of results, which are available at both the glomerulus and slide levels. This allows users to complete a typical analysis task without leaving the main application, QuPath. This tool is the first to integrate the entire workflow for the assessment of glomerulonephritis directly into the nephropathologists' workspace, accelerating and supporting their diagnosis.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 35-47"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719282/pdf/","citationCount":"0","resultStr":"{\"title\":\"GNCnn: A QuPath extension for glomerulosclerosis and glomerulonephritis characterization based on deep learning\",\"authors\":\"Israel Mateos-Aparicio-Ruiz , Anibal Pedraza , Jan Ulrich Becker , Nicola Altini , Jesus Salido , Gloria Bueno\",\"doi\":\"10.1016/j.csbj.2024.11.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool. This study proposes GNCnn, the first open-source QuPath extension specifically designed for nephropathology. It integrates deep learning models to provide nephropathologists with an accessible, automatic detector and classifier of glomeruli, the basic filtering units of the kidneys. The aim is to offer nephropathologists a freely available application to measure and analyze glomeruli to identify conditions such as glomerulosclerosis and glomerulonephritis. GNCnn offers a user-friendly interface that enables nephropathologists to detect glomeruli with high accuracy (Dice coefficient of 0.807) and categorize them as either sclerotic or non-sclerotic, achieving a balanced accuracy of 98.46%. Furthermore, it facilitates the classification of non-sclerotic glomeruli into 12 commonly diagnosed types of glomerulonephritis, with a top-3 balanced accuracy of 84.41%. GNCnn provides real-time updates of results, which are available at both the glomerulus and slide levels. This allows users to complete a typical analysis task without leaving the main application, QuPath. This tool is the first to integrate the entire workflow for the assessment of glomerulonephritis directly into the nephropathologists' workspace, accelerating and supporting their diagnosis.</div></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"Pages 35-47\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037024004197\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004197","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
GNCnn: A QuPath extension for glomerulosclerosis and glomerulonephritis characterization based on deep learning
The digitalization of traditional glass slide microscopy into whole slide images has opened up new opportunities for pathology, such as the application of artificial intelligence techniques. Specialized software is necessary to visualize and analyze these images. One of these applications is QuPath, a popular bioimage analysis tool. This study proposes GNCnn, the first open-source QuPath extension specifically designed for nephropathology. It integrates deep learning models to provide nephropathologists with an accessible, automatic detector and classifier of glomeruli, the basic filtering units of the kidneys. The aim is to offer nephropathologists a freely available application to measure and analyze glomeruli to identify conditions such as glomerulosclerosis and glomerulonephritis. GNCnn offers a user-friendly interface that enables nephropathologists to detect glomeruli with high accuracy (Dice coefficient of 0.807) and categorize them as either sclerotic or non-sclerotic, achieving a balanced accuracy of 98.46%. Furthermore, it facilitates the classification of non-sclerotic glomeruli into 12 commonly diagnosed types of glomerulonephritis, with a top-3 balanced accuracy of 84.41%. GNCnn provides real-time updates of results, which are available at both the glomerulus and slide levels. This allows users to complete a typical analysis task without leaving the main application, QuPath. This tool is the first to integrate the entire workflow for the assessment of glomerulonephritis directly into the nephropathologists' workspace, accelerating and supporting their diagnosis.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology