{"title":"在泡沫镍铁基体上设计和合成自生长NiFe双金属磷化物催化剂,用于高效的整体水分解。","authors":"Fanjia Sun , Jianbing Zang , Zhiwei Hou , Xueqing Tian , Rui Zhu , Youbin Zheng , Yanhui Wang , Liang Dong","doi":"10.1016/j.jcis.2025.01.042","DOIUrl":null,"url":null,"abstract":"<div><div>The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel–iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe<sub>2</sub>P-Ni<sub>2</sub>P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (H<sub>ad</sub>). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst’s exceptional intrinsic activity for the oxygen evolution reaction (OER).</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 355-366"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting\",\"authors\":\"Fanjia Sun , Jianbing Zang , Zhiwei Hou , Xueqing Tian , Rui Zhu , Youbin Zheng , Yanhui Wang , Liang Dong\",\"doi\":\"10.1016/j.jcis.2025.01.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel–iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe<sub>2</sub>P-Ni<sub>2</sub>P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (H<sub>ad</sub>). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst’s exceptional intrinsic activity for the oxygen evolution reaction (OER).</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"684 \",\"pages\":\"Pages 355-366\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725000530\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725000530","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting
The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel–iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (Fe2P-Ni2P@NFF-L). This novel method of substrate filling enhanced space utilization, while the presence of micropores and mesopores on the nanosheet surfaces facilitated electrolyte infiltration and ion diffusion, thereby significantly increasing the specific surface area. The formation of a two-phase heterointerface accelerated electron transmission and transfer, enhancing water dissociation and the adsorption of hydrogen adatoms (Had). In addition, under anodic oxidation conditions, the dynamic surface reconstruction facilitated a synergistic interaction between the highly active β-NiOOH and α-FeOOH phases, which significantly contributed to the catalyst’s exceptional intrinsic activity for the oxygen evolution reaction (OER).
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies