无机砷通过p53通路调控Argonaute 2的表达,从而调控细胞凋亡。

IF 2.2 4区 医学 Q3 TOXICOLOGY
Toxicology Research Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1093/toxres/tfae231
Kunyu Du, Jingkui Shu, Jintao Wu, Na Liu, He Ma, Jinyun Jiang, Yuefeng He, Xinan Wu
{"title":"无机砷通过p53通路调控Argonaute 2的表达,从而调控细胞凋亡。","authors":"Kunyu Du, Jingkui Shu, Jintao Wu, Na Liu, He Ma, Jinyun Jiang, Yuefeng He, Xinan Wu","doi":"10.1093/toxres/tfae231","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA). The results showed that silencing AGO2 not only reduced cell viability but also intensified apoptosis, highlighting its role in activating the p53 pathway. This was further supported by increased phosphorylation of p53 at Ser392 and Thr55, reinforcing AGO2's involvement in apoptotic processes. The study underscores the potential of AGO2 as a therapeutic target in arsenic-related pathologies and highlights the critical need for managing occupational exposure to arsenic.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"14 1","pages":"tfae231"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711588/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway.\",\"authors\":\"Kunyu Du, Jingkui Shu, Jintao Wu, Na Liu, He Ma, Jinyun Jiang, Yuefeng He, Xinan Wu\",\"doi\":\"10.1093/toxres/tfae231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA). The results showed that silencing AGO2 not only reduced cell viability but also intensified apoptosis, highlighting its role in activating the p53 pathway. This was further supported by increased phosphorylation of p53 at Ser392 and Thr55, reinforcing AGO2's involvement in apoptotic processes. The study underscores the potential of AGO2 as a therapeutic target in arsenic-related pathologies and highlights the critical need for managing occupational exposure to arsenic.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"14 1\",\"pages\":\"tfae231\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae231\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae231","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了砷诱导16HBE细胞凋亡中AGO2 (Argonaute 2)的作用,并探讨了AGO2表达与砷暴露之间的关系。通过siRNA沉默AGO2,我们使用CCK-8、HO-PI和JC-1检测其对细胞活力和凋亡的影响,并辅以qRT-PCR和Western blot分析基因和蛋白的表达。我们的研究结果揭示了AGO2表达与无机砷(iAs)暴露水平之间的显著相关性,这种相关性比其他形式的砷(如单甲基larsonic (MMA)和二甲基larsinic acid (DMA))更为明显。结果表明,沉默AGO2不仅降低了细胞活力,而且加剧了细胞凋亡,突出了其在激活p53通路中的作用。p53的Ser392和Thr55位点磷酸化增加进一步支持了这一点,强化了AGO2参与凋亡过程。该研究强调了AGO2作为砷相关病理治疗靶点的潜力,并强调了管理职业砷暴露的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway.

This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA). The results showed that silencing AGO2 not only reduced cell viability but also intensified apoptosis, highlighting its role in activating the p53 pathway. This was further supported by increased phosphorylation of p53 at Ser392 and Thr55, reinforcing AGO2's involvement in apoptotic processes. The study underscores the potential of AGO2 as a therapeutic target in arsenic-related pathologies and highlights the critical need for managing occupational exposure to arsenic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信