Eric C Anderson, Rachael M Giglio, Matthew G DeSaix, Timothy J Smyser
{"title":"不重复使用遗传物质的混合个体的模拟。","authors":"Eric C Anderson, Rachael M Giglio, Matthew G DeSaix, Timothy J Smyser","doi":"10.1111/1755-0998.14069","DOIUrl":null,"url":null,"abstract":"<p><p>While a best practice for evaluating the behaviour of genetic clustering algorithms on empirical data is to conduct parallel analyses on simulated data, these types of simulation techniques often involve sampling genetic data with replacement. In this paper we demonstrate that sampling with replacement, especially with large marker sets, inflates the perceived statistical power to correctly assign individuals (or the alleles that they carry) back to source populations-a phenomenon we refer to as resampling-induced, spurious power inflation (RISPI). To address this issue, we present gscramble, a simulation approach in R for creating biologically informed individual genotypes from empirical data that: (1) samples alleles from populations without replacement and (2) segregates alleles based on species-specific recombination rates. This framework makes it possible to simulate admixed individuals in a way that respects the physical linkage between markers on the same chromosome and which does not suffer from RISPI. This is achieved in gscramble by allowing users to specify pedigrees of varying complexity in order to simulate admixed genotypes, segregating and tracking haplotype blocks from different source populations through those pedigrees, and then sampling-using a variety of permutation schemes-alleles from empirical data into those haplotype blocks. We demonstrate the functionality of gscramble with both simulated and empirical data sets and highlight additional uses of the package that users may find valuable.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14069"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gscramble: Simulation of Admixed Individuals Without Reuse of Genetic Material.\",\"authors\":\"Eric C Anderson, Rachael M Giglio, Matthew G DeSaix, Timothy J Smyser\",\"doi\":\"10.1111/1755-0998.14069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While a best practice for evaluating the behaviour of genetic clustering algorithms on empirical data is to conduct parallel analyses on simulated data, these types of simulation techniques often involve sampling genetic data with replacement. In this paper we demonstrate that sampling with replacement, especially with large marker sets, inflates the perceived statistical power to correctly assign individuals (or the alleles that they carry) back to source populations-a phenomenon we refer to as resampling-induced, spurious power inflation (RISPI). To address this issue, we present gscramble, a simulation approach in R for creating biologically informed individual genotypes from empirical data that: (1) samples alleles from populations without replacement and (2) segregates alleles based on species-specific recombination rates. This framework makes it possible to simulate admixed individuals in a way that respects the physical linkage between markers on the same chromosome and which does not suffer from RISPI. This is achieved in gscramble by allowing users to specify pedigrees of varying complexity in order to simulate admixed genotypes, segregating and tracking haplotype blocks from different source populations through those pedigrees, and then sampling-using a variety of permutation schemes-alleles from empirical data into those haplotype blocks. We demonstrate the functionality of gscramble with both simulated and empirical data sets and highlight additional uses of the package that users may find valuable.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14069\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14069\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
gscramble: Simulation of Admixed Individuals Without Reuse of Genetic Material.
While a best practice for evaluating the behaviour of genetic clustering algorithms on empirical data is to conduct parallel analyses on simulated data, these types of simulation techniques often involve sampling genetic data with replacement. In this paper we demonstrate that sampling with replacement, especially with large marker sets, inflates the perceived statistical power to correctly assign individuals (or the alleles that they carry) back to source populations-a phenomenon we refer to as resampling-induced, spurious power inflation (RISPI). To address this issue, we present gscramble, a simulation approach in R for creating biologically informed individual genotypes from empirical data that: (1) samples alleles from populations without replacement and (2) segregates alleles based on species-specific recombination rates. This framework makes it possible to simulate admixed individuals in a way that respects the physical linkage between markers on the same chromosome and which does not suffer from RISPI. This is achieved in gscramble by allowing users to specify pedigrees of varying complexity in order to simulate admixed genotypes, segregating and tracking haplotype blocks from different source populations through those pedigrees, and then sampling-using a variety of permutation schemes-alleles from empirical data into those haplotype blocks. We demonstrate the functionality of gscramble with both simulated and empirical data sets and highlight additional uses of the package that users may find valuable.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.