Kairi Furui, Takafumi Shimizu, Yutaka Akiyama, S Roy Kimura, Yoh Terada, Masahito Ohue
{"title":"对图:一种提高远距离复合变换相对自由能摄动计算精度的中间插入方法。","authors":"Kairi Furui, Takafumi Shimizu, Yutaka Akiyama, S Roy Kimura, Yoh Terada, Masahito Ohue","doi":"10.1021/acs.jcim.4c01634","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of the difference in binding free energy between compounds is crucial for reducing the high costs associated with drug discovery. Relative binding free energy perturbation (RBFEP) calculations are effective for small structural changes; however, large topological changes pose significant challenges for calculations, leading to high errors and difficulties in convergence. To address such issues, we propose a new approach─PairMap─that focuses on introducing appropriate intermediates for complex transformations between two input compounds. PairMap-generated intermediates exhaustively, determined the optimal conversion paths, and introduced thermodynamic cycles into the perturbation map to improve accuracy and reduce computational cost. PairMap succeeded in introducing appropriate intermediates that could not be discovered by existing simple approaches by comprehensively considering intermediates. Furthermore, we evaluated the accuracy of the prediction of binding free energy using 9 compounds selected from Wang et al.'s benchmark set, which included particularly complex transformations. The perturbation map generated by PairMap achieved excellent accuracy with a mean absolute error of 0.93 kcal/mol compared to 1.70 kcal/mol when using the perturbation map generated by the conventional Flare FEP intermediate introduction method. Moreover, in a scaffold hopping experiment conducted with the PDE5a target involving complex transformations, PairMap provided more accurate free energy predictions than ABFEP calculations, yielding more reliable results compared to experimental data. Additionally, PairMap can be utilized to introduce intermediates into congeneric series, demonstrating that complex links on the perturbation map can be resolved with minimal addition of intermediates and links. In conclusion, PairMap overcomes the limitations of existing methods by enabling RBFEP calculations for more complex transformations, further streamlining lead optimization in drug discovery.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"705-721"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776053/pdf/","citationCount":"0","resultStr":"{\"title\":\"PairMap: An Intermediate Insertion Approach for Improving the Accuracy of Relative Free Energy Perturbation Calculations for Distant Compound Transformations.\",\"authors\":\"Kairi Furui, Takafumi Shimizu, Yutaka Akiyama, S Roy Kimura, Yoh Terada, Masahito Ohue\",\"doi\":\"10.1021/acs.jcim.4c01634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate prediction of the difference in binding free energy between compounds is crucial for reducing the high costs associated with drug discovery. Relative binding free energy perturbation (RBFEP) calculations are effective for small structural changes; however, large topological changes pose significant challenges for calculations, leading to high errors and difficulties in convergence. To address such issues, we propose a new approach─PairMap─that focuses on introducing appropriate intermediates for complex transformations between two input compounds. PairMap-generated intermediates exhaustively, determined the optimal conversion paths, and introduced thermodynamic cycles into the perturbation map to improve accuracy and reduce computational cost. PairMap succeeded in introducing appropriate intermediates that could not be discovered by existing simple approaches by comprehensively considering intermediates. Furthermore, we evaluated the accuracy of the prediction of binding free energy using 9 compounds selected from Wang et al.'s benchmark set, which included particularly complex transformations. The perturbation map generated by PairMap achieved excellent accuracy with a mean absolute error of 0.93 kcal/mol compared to 1.70 kcal/mol when using the perturbation map generated by the conventional Flare FEP intermediate introduction method. Moreover, in a scaffold hopping experiment conducted with the PDE5a target involving complex transformations, PairMap provided more accurate free energy predictions than ABFEP calculations, yielding more reliable results compared to experimental data. Additionally, PairMap can be utilized to introduce intermediates into congeneric series, demonstrating that complex links on the perturbation map can be resolved with minimal addition of intermediates and links. In conclusion, PairMap overcomes the limitations of existing methods by enabling RBFEP calculations for more complex transformations, further streamlining lead optimization in drug discovery.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"705-721\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01634\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01634","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PairMap: An Intermediate Insertion Approach for Improving the Accuracy of Relative Free Energy Perturbation Calculations for Distant Compound Transformations.
Accurate prediction of the difference in binding free energy between compounds is crucial for reducing the high costs associated with drug discovery. Relative binding free energy perturbation (RBFEP) calculations are effective for small structural changes; however, large topological changes pose significant challenges for calculations, leading to high errors and difficulties in convergence. To address such issues, we propose a new approach─PairMap─that focuses on introducing appropriate intermediates for complex transformations between two input compounds. PairMap-generated intermediates exhaustively, determined the optimal conversion paths, and introduced thermodynamic cycles into the perturbation map to improve accuracy and reduce computational cost. PairMap succeeded in introducing appropriate intermediates that could not be discovered by existing simple approaches by comprehensively considering intermediates. Furthermore, we evaluated the accuracy of the prediction of binding free energy using 9 compounds selected from Wang et al.'s benchmark set, which included particularly complex transformations. The perturbation map generated by PairMap achieved excellent accuracy with a mean absolute error of 0.93 kcal/mol compared to 1.70 kcal/mol when using the perturbation map generated by the conventional Flare FEP intermediate introduction method. Moreover, in a scaffold hopping experiment conducted with the PDE5a target involving complex transformations, PairMap provided more accurate free energy predictions than ABFEP calculations, yielding more reliable results compared to experimental data. Additionally, PairMap can be utilized to introduce intermediates into congeneric series, demonstrating that complex links on the perturbation map can be resolved with minimal addition of intermediates and links. In conclusion, PairMap overcomes the limitations of existing methods by enabling RBFEP calculations for more complex transformations, further streamlining lead optimization in drug discovery.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.