调控谱系特异性转录因子的工程基因和蛋白质开关

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ana P. Teixeira, Nik Franko, Martin Fussenegger
{"title":"调控谱系特异性转录因子的工程基因和蛋白质开关","authors":"Ana P. Teixeira,&nbsp;Nik Franko,&nbsp;Martin Fussenegger","doi":"10.1002/bit.28920","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases. First, we leveraged hepatitis C virus and human rhinovirus proteases to control the activity of chimeric transcription factors, enabling gene expression activation exclusively in the presence of protease inhibitors and achieving high fold-inductions in hPSC lines. Second, we built single-chain protein switches regulating the activity of three differentiation-related pancreatic TFs, MafA, Pdx1, and Ngn3, each engineered with a protease cleavage site within its structure and having the corresponding protease fused at one terminus. While variants lacking the protease retained most of the unmodified TF activity, the attachment of the protease significantly decreased the activity, which could be rescued upon addition of the corresponding protease inhibitor. We confirmed the functionality of these protein switches for simultaneously controlling the activity of three TFs with a common input molecule, as well as the orthogonality of each protease-based system to independently regulate two TFs. Finally, we validated these very compact systems for precisely controlling TF activity in hPSCs. Our results suggest that they will be valuable tools for research in both developmental biology and regenerative medicine.</p>\n </div>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 4","pages":"1051-1061"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors\",\"authors\":\"Ana P. Teixeira,&nbsp;Nik Franko,&nbsp;Martin Fussenegger\",\"doi\":\"10.1002/bit.28920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases. First, we leveraged hepatitis C virus and human rhinovirus proteases to control the activity of chimeric transcription factors, enabling gene expression activation exclusively in the presence of protease inhibitors and achieving high fold-inductions in hPSC lines. Second, we built single-chain protein switches regulating the activity of three differentiation-related pancreatic TFs, MafA, Pdx1, and Ngn3, each engineered with a protease cleavage site within its structure and having the corresponding protease fused at one terminus. While variants lacking the protease retained most of the unmodified TF activity, the attachment of the protease significantly decreased the activity, which could be rescued upon addition of the corresponding protease inhibitor. We confirmed the functionality of these protein switches for simultaneously controlling the activity of three TFs with a common input molecule, as well as the orthogonality of each protease-based system to independently regulate two TFs. Finally, we validated these very compact systems for precisely controlling TF activity in hPSCs. Our results suggest that they will be valuable tools for research in both developmental biology and regenerative medicine.</p>\\n </div>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"122 4\",\"pages\":\"1051-1061\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28920\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28920","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类多能干细胞(hPSCs)可以在体外分化为越来越多的成熟细胞类型,为解决广泛的疾病和研究人类发育提供了重要的希望。进一步增强干细胞分化方法的一种方法是协调多个诱导基因或蛋白质开关在同一细胞内同时操作,以最小的交叉干扰,精确调节谱系指定转录因子(tf)网络,以指导细胞命运决定。因此,在本研究中,我们设计并测试了多种哺乳动物基因和蛋白质开关对临床安全的病毒蛋白酶小分子抑制剂的反应。首先,我们利用丙型肝炎病毒和人鼻病毒蛋白酶来控制嵌合转录因子的活性,使基因表达仅在蛋白酶抑制剂存在的情况下激活,并在hPSC细胞系中实现高倍数诱导。其次,我们构建了单链蛋白开关,调节三种与分化相关的胰腺TFs (MafA、Pdx1和Ngn3)的活性,每种TFs在其结构中都有蛋白酶裂解位点,并在其一端融合相应的蛋白酶。虽然缺乏蛋白酶的变体保留了大部分未修饰的TF活性,但蛋白酶的附着显著降低了活性,添加相应的蛋白酶抑制剂可以恢复活性。我们证实了这些蛋白质开关的功能,即通过一个共同的输入分子同时控制三个tf的活性,以及每个基于蛋白酶的系统的正交性,以独立调节两个tf。最后,我们验证了这些非常紧凑的系统可以精确控制hPSCs中的TF活性。我们的研究结果表明,它们将成为研究发育生物学和再生医学的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors

Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases. First, we leveraged hepatitis C virus and human rhinovirus proteases to control the activity of chimeric transcription factors, enabling gene expression activation exclusively in the presence of protease inhibitors and achieving high fold-inductions in hPSC lines. Second, we built single-chain protein switches regulating the activity of three differentiation-related pancreatic TFs, MafA, Pdx1, and Ngn3, each engineered with a protease cleavage site within its structure and having the corresponding protease fused at one terminus. While variants lacking the protease retained most of the unmodified TF activity, the attachment of the protease significantly decreased the activity, which could be rescued upon addition of the corresponding protease inhibitor. We confirmed the functionality of these protein switches for simultaneously controlling the activity of three TFs with a common input molecule, as well as the orthogonality of each protease-based system to independently regulate two TFs. Finally, we validated these very compact systems for precisely controlling TF activity in hPSCs. Our results suggest that they will be valuable tools for research in both developmental biology and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信