聚焦超声和微泡介导的CRISPR-Cas9核糖核蛋白向人诱导多能干细胞的传递。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2025-03-05 Epub Date: 2025-01-10 DOI:10.1016/j.ymthe.2025.01.013
Kyle Hazel, Davindra Singh, Stephanie He, Zakary Guertin, Mathieu C Husser, Brandon Helfield
{"title":"聚焦超声和微泡介导的CRISPR-Cas9核糖核蛋白向人诱导多能干细胞的传递。","authors":"Kyle Hazel, Davindra Singh, Stephanie He, Zakary Guertin, Mathieu C Husser, Brandon Helfield","doi":"10.1016/j.ymthe.2025.01.013","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"986-996"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Focused ultrasound and microbubble-mediated delivery of CRISPR-Cas9 ribonucleoprotein to human induced pluripotent stem cells.\",\"authors\":\"Kyle Hazel, Davindra Singh, Stephanie He, Zakary Guertin, Mathieu C Husser, Brandon Helfield\",\"doi\":\"10.1016/j.ymthe.2025.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"986-996\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.01.013\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与其他CRISPR-Cas9递送形式相比,CRISPR-Cas9核糖核蛋白(RNPs)由于其高靶向效率、快速活性和缺乏插入突变性而被广泛考虑用于基因治疗。肥厚性心肌病等遗传性疾病目前缺乏有效的治疗策略,是CRISPR-Cas9基因编辑技术的主要靶点。然而,目前的Cas9体内递送策略存在不必要的免疫原性反应风险。这项概念验证研究旨在证明聚焦超声(FUS)结合微泡可用于递送Cas9-sgRNA(单导RNA) RNPs并在体外功能编辑人类诱导多能干细胞(hiPSCs),这是一种可以通过hipsc衍生的心肌细胞扩展到心血管研究的模型系统。在这里,我们首先使用我们定制的实验平台,用临床Definity®微泡剂确定适合将大蛋白可行地递送到hiPSC的声学条件。从这里,我们将靶向EGFP(增强型绿色荧光蛋白)基因的Cas9-sgRNA RNP复合物传递到表达EGFP的hiPSCs中,以敲除EGFP。治疗过程中同时进行的声空化检测证实了hipsc中微泡破坏与fus介导的活蛋白递送之间的强烈相关性。这项研究首次显示了fus介导技术在人类干细胞中进行靶向和精确CRISPR-Cas9基因编辑的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Focused ultrasound and microbubble-mediated delivery of CRISPR-Cas9 ribonucleoprotein to human induced pluripotent stem cells.

CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity, and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single-guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSCs with clinical Definity microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows for the first time the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信