Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes
{"title":"从x线片生成合成计算机层析成像的策略:范围综述。","authors":"Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes","doi":"10.1016/j.media.2025.103454","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.</p><p><strong>Methods: </strong>A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.</p><p><strong>Results: </strong>76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.</p><p><strong>Conclusion: </strong>This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"103454"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review.\",\"authors\":\"Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E Staartjes\",\"doi\":\"10.1016/j.media.2025.103454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.</p><p><strong>Methods: </strong>A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.</p><p><strong>Results: </strong>76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.</p><p><strong>Conclusion: </strong>This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.</p>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"101 \",\"pages\":\"103454\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2025.103454\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2025.103454","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review.
Background: Advancements in tomographic medical imaging have revolutionized diagnostics and treatment monitoring by offering detailed 3D visualization of internal structures. Despite the significant value of computed tomography (CT), challenges such as high radiation dosage and cost barriers limit its accessibility, especially in low- and middle-income countries. Recognizing the potential of radiographic imaging in reconstructing CT images, this scoping review aims to explore the emerging field of synthesizing 3D CT-like images from 2D radiographs by examining the current methodologies.
Methods: A scoping review was carried out following PRISMA-SR guidelines. Eligibility criteria for the articles included full-text articles published up to September 9, 2024, studying methodologies for the synthesis of 3D CT images from 2D biplanar or four-projection x-ray images. Eligible articles were sourced from PubMed MEDLINE, Embase, and arXiv.
Results: 76 studies were included. The majority (50.8 %, n = 30) were published between 2010 and 2020 (38.2 %, n = 29) and from 2020 onwards (36.8 %, n = 28), with European (40.8 %, n = 31), North American (26.3 %, n = 20), and Asian (32.9 %, n = 25) institutions being primary contributors. Anatomical regions varied, with 17.1 % (n = 13) of studies not using clinical data. Further, studies focused on the chest (25 %, n = 19), spine and vertebrae (17.1 %, n = 13), coronary arteries (10.5 %, n = 8), and cranial structures (10.5 %, n = 8), among other anatomical regions. Convolutional neural networks (CNN) (19.7 %, n = 15), generative adversarial networks (21.1 %, n = 16) and statistical shape models (15.8 %, n = 12) emerged as the most applied methodologies. A limited number of studies included explored the use of conditional diffusion models, iterative reconstruction algorithms, statistical shape models, and digital tomosynthesis.
Conclusion: This scoping review summarizes current strategies and challenges in synthetic imaging generation. The development of 3D CT-like imaging from 2D radiographs could reduce radiation risk while simultaneously addressing financial and logistical obstacles that impede global access to CT imaging. Despite initial promising results, the field encounters challenges with varied methodologies and frequent lack of proper validation, requiring further research to define synthetic imaging's clinical role.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.