{"title":"Discovery of a tribenzophenazine analog for binding to the KRAS mRNA G-quadruplex structures in the cisplatin-resistant non-small cell lung cancer.","authors":"Xiao-Dong Wang, Jia-Hong Lin, Ming-Hao Hu","doi":"10.1016/j.jbc.2025.108164","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is the malignant tumor with the highest morbidity and mortality rate worldwide, of which non-small cell lung cancer (NSCLC) accounts for approximately 85%. KRAS mutations are one of the significant mechanisms underlying the occurrence, development, immune escape, and chemotherapy resistance of NSCLC. Two KRAS inhibitors are approved by FDA for the treatment of NSCLC in the past three years. However, they are only effective to KRAS G12C mutant, and moreover, innate and acquired drug resistance is already reported, leaving an urgent need to block KRAS pathways through novel targets. In this study, we focused on the discovery of ligands targeting the RNA G-quadruplexes (RG4s) in 5'-untranslated region (5'-UTR) of KRAS mRNA, and a novel tribenzophenazine analog (MBD) was identified as the lead compound. Further mechanisms were discussed in A549/DDP cells, a cisplatin-resistant and KRAS-mutant NSCLC cell line. Antitumor efficacy was verified both in vitro in A549/DDP cells, and in vivo in a nude mouse xenograft model implanted with A549/DDP cells. To sum up, our results suggest the potential of MBD as a prominent anti-KRAS-driven NSCLC agent, and propose a new idea for the development of small molecule ligands targeting KRAS RG4s.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108164"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108164","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of a tribenzophenazine analog for binding to the KRAS mRNA G-quadruplex structures in the cisplatin-resistant non-small cell lung cancer.
Lung cancer is the malignant tumor with the highest morbidity and mortality rate worldwide, of which non-small cell lung cancer (NSCLC) accounts for approximately 85%. KRAS mutations are one of the significant mechanisms underlying the occurrence, development, immune escape, and chemotherapy resistance of NSCLC. Two KRAS inhibitors are approved by FDA for the treatment of NSCLC in the past three years. However, they are only effective to KRAS G12C mutant, and moreover, innate and acquired drug resistance is already reported, leaving an urgent need to block KRAS pathways through novel targets. In this study, we focused on the discovery of ligands targeting the RNA G-quadruplexes (RG4s) in 5'-untranslated region (5'-UTR) of KRAS mRNA, and a novel tribenzophenazine analog (MBD) was identified as the lead compound. Further mechanisms were discussed in A549/DDP cells, a cisplatin-resistant and KRAS-mutant NSCLC cell line. Antitumor efficacy was verified both in vitro in A549/DDP cells, and in vivo in a nude mouse xenograft model implanted with A549/DDP cells. To sum up, our results suggest the potential of MBD as a prominent anti-KRAS-driven NSCLC agent, and propose a new idea for the development of small molecule ligands targeting KRAS RG4s.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.