基于改进局部重力模型的复杂网络影响节点识别

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-01-13 DOI:10.1007/s12043-024-02864-6
Yongqing Wu, Tianchang Tang
{"title":"基于改进局部重力模型的复杂网络影响节点识别","authors":"Yongqing Wu,&nbsp;Tianchang Tang","doi":"10.1007/s12043-024-02864-6","DOIUrl":null,"url":null,"abstract":"<div><p>Influential node identification has long been a focal point for researchers. Existing methods primarily focus on the individual topological characteristics of the nodes, making it difficult to accurately identify key nodes within a network. This paper introduces an improved local gravity model (ILGM) that incorporates node position, paths, quantity and injection to evaluate the influence of each node. The ILGM further explores the topological characteristics of neighbouring nodes, incorporating path and quantity data from adjacent nodes. This enhancement significantly improves the accuracy of the algorithm’s results. Empirical evaluations conducted on five real-world networks and one artificial network demonstrate that the proposed model effectively identifies influential nodes in complex networks.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying influential nodes in complex networks based on improved local gravity model\",\"authors\":\"Yongqing Wu,&nbsp;Tianchang Tang\",\"doi\":\"10.1007/s12043-024-02864-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Influential node identification has long been a focal point for researchers. Existing methods primarily focus on the individual topological characteristics of the nodes, making it difficult to accurately identify key nodes within a network. This paper introduces an improved local gravity model (ILGM) that incorporates node position, paths, quantity and injection to evaluate the influence of each node. The ILGM further explores the topological characteristics of neighbouring nodes, incorporating path and quantity data from adjacent nodes. This enhancement significantly improves the accuracy of the algorithm’s results. Empirical evaluations conducted on five real-world networks and one artificial network demonstrate that the proposed model effectively identifies influential nodes in complex networks.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02864-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02864-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

影响节点识别一直是研究人员关注的焦点。现有方法主要关注节点的单个拓扑特征,难以准确识别网络中的关键节点。本文介绍了一种改进的局部重力模型(ILGM),该模型结合了节点位置、路径、数量和注入来评估每个节点的影响。ILGM进一步探索邻近节点的拓扑特征,结合来自邻近节点的路径和数量数据。这种增强显著提高了算法结果的准确性。对5个真实网络和1个人工网络的实证评估表明,该模型能够有效识别复杂网络中的影响节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying influential nodes in complex networks based on improved local gravity model

Identifying influential nodes in complex networks based on improved local gravity model

Influential node identification has long been a focal point for researchers. Existing methods primarily focus on the individual topological characteristics of the nodes, making it difficult to accurately identify key nodes within a network. This paper introduces an improved local gravity model (ILGM) that incorporates node position, paths, quantity and injection to evaluate the influence of each node. The ILGM further explores the topological characteristics of neighbouring nodes, incorporating path and quantity data from adjacent nodes. This enhancement significantly improves the accuracy of the algorithm’s results. Empirical evaluations conducted on five real-world networks and one artificial network demonstrate that the proposed model effectively identifies influential nodes in complex networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信