Pauline da Costa, Maria Rosa Chitolina Schetinger, Jucimara Baldissarelli, Karine Paula Reichert, Naiara Stefanello, Nathieli Bianchin Bottari, Taís Vidal, Ivana Beatrice Mânica da Cruz, Charles Elias Assmann, Vera Maria Melchiors Morsch
{"title":"黑加仑(Ribes nigrum L.)及其与多奈哌齐的关联在东莨菪碱诱导的小鼠遗忘模型中恢复认知障碍,抑制氧化应激和促炎症反应,并改善嘌呤能信号传导","authors":"Pauline da Costa, Maria Rosa Chitolina Schetinger, Jucimara Baldissarelli, Karine Paula Reichert, Naiara Stefanello, Nathieli Bianchin Bottari, Taís Vidal, Ivana Beatrice Mânica da Cruz, Charles Elias Assmann, Vera Maria Melchiors Morsch","doi":"10.1007/s11064-024-04327-1","DOIUrl":null,"url":null,"abstract":"<div><p>Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice\",\"authors\":\"Pauline da Costa, Maria Rosa Chitolina Schetinger, Jucimara Baldissarelli, Karine Paula Reichert, Naiara Stefanello, Nathieli Bianchin Bottari, Taís Vidal, Ivana Beatrice Mânica da Cruz, Charles Elias Assmann, Vera Maria Melchiors Morsch\",\"doi\":\"10.1007/s11064-024-04327-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04327-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04327-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.