与环相关的\(2 \times 2\)块矩阵

IF 0.5 4区 数学 Q3 MATHEMATICS
Sourav Pal, Nitin Tomar
{"title":"与环相关的\\(2 \\times 2\\)块矩阵","authors":"Sourav Pal,&nbsp;Nitin Tomar","doi":"10.1007/s00013-024-02058-x","DOIUrl":null,"url":null,"abstract":"<div><p>A bounded Hilbert space operator <i>T</i> for which the closure of the annulus </p><div><div><span>$$\\begin{aligned} \\mathbb {A}_r=\\{z: \\ r&lt;|z|&lt;1\\} \\subseteq \\mathbb {C}, \\qquad (0&lt;r&lt;1) \\end{aligned}$$</span></div></div><p>is a spectral set is called an <span>\\(\\mathbb {A}_r\\)</span>-contraction. A celebrated theorem due to Douglas, Muhly, and Pearcy gives a necessary and sufficient condition such that a <span>\\(2 \\times 2\\)</span> block matrix of operators <span>\\( \\begin{bmatrix} T_1 &amp; X \\\\ 0 &amp; T_2 \\end{bmatrix} \\)</span> is a contraction. We seek an answer to the same question in the setting of an annulus, i.e., under what conditions does <span>\\(\\widetilde{T}_Y=\\begin{bmatrix} T_1 &amp; Y\\\\ 0 &amp; T_2\\\\ \\end{bmatrix} \\)</span> become an <span>\\(\\mathbb {A}_r\\)</span>-contraction? For <span>\\(\\mathbb {A}_r\\)</span>-contractions <span>\\(T, T_1,T_2\\)</span> and an operator <i>X</i> that commutes with <span>\\(T, T_1,T_2\\)</span>, here we find a necessary and sufficient condition such that each of the block matrices </p><div><div><span>$$\\begin{aligned} T_X= \\begin{bmatrix} T &amp; X\\\\ 0 &amp; T\\\\ \\end{bmatrix} , \\quad \\widehat{T}_X=\\begin{bmatrix} T_1 &amp; X(T_1-T_2)\\\\ 0 &amp; T_2\\\\ \\end{bmatrix} \\end{aligned}$$</span></div></div><p>becomes an <span>\\(\\mathbb {A}_r\\)</span>-contraction.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"75 - 82"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(2 \\\\times 2\\\\) block matrices associated with an annulus\",\"authors\":\"Sourav Pal,&nbsp;Nitin Tomar\",\"doi\":\"10.1007/s00013-024-02058-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A bounded Hilbert space operator <i>T</i> for which the closure of the annulus </p><div><div><span>$$\\\\begin{aligned} \\\\mathbb {A}_r=\\\\{z: \\\\ r&lt;|z|&lt;1\\\\} \\\\subseteq \\\\mathbb {C}, \\\\qquad (0&lt;r&lt;1) \\\\end{aligned}$$</span></div></div><p>is a spectral set is called an <span>\\\\(\\\\mathbb {A}_r\\\\)</span>-contraction. A celebrated theorem due to Douglas, Muhly, and Pearcy gives a necessary and sufficient condition such that a <span>\\\\(2 \\\\times 2\\\\)</span> block matrix of operators <span>\\\\( \\\\begin{bmatrix} T_1 &amp; X \\\\\\\\ 0 &amp; T_2 \\\\end{bmatrix} \\\\)</span> is a contraction. We seek an answer to the same question in the setting of an annulus, i.e., under what conditions does <span>\\\\(\\\\widetilde{T}_Y=\\\\begin{bmatrix} T_1 &amp; Y\\\\\\\\ 0 &amp; T_2\\\\\\\\ \\\\end{bmatrix} \\\\)</span> become an <span>\\\\(\\\\mathbb {A}_r\\\\)</span>-contraction? For <span>\\\\(\\\\mathbb {A}_r\\\\)</span>-contractions <span>\\\\(T, T_1,T_2\\\\)</span> and an operator <i>X</i> that commutes with <span>\\\\(T, T_1,T_2\\\\)</span>, here we find a necessary and sufficient condition such that each of the block matrices </p><div><div><span>$$\\\\begin{aligned} T_X= \\\\begin{bmatrix} T &amp; X\\\\\\\\ 0 &amp; T\\\\\\\\ \\\\end{bmatrix} , \\\\quad \\\\widehat{T}_X=\\\\begin{bmatrix} T_1 &amp; X(T_1-T_2)\\\\\\\\ 0 &amp; T_2\\\\\\\\ \\\\end{bmatrix} \\\\end{aligned}$$</span></div></div><p>becomes an <span>\\\\(\\\\mathbb {A}_r\\\\)</span>-contraction.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 1\",\"pages\":\"75 - 82\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02058-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02058-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个有界的希尔伯特空间算子T,其环空$$\begin{aligned} \mathbb {A}_r=\{z: \ r<|z|<1\} \subseteq \mathbb {C}, \qquad (0<r<1) \end{aligned}$$的闭包是一个谱集,称为\(\mathbb {A}_r\) -收缩。由Douglas, Muhly, and Pearcy提出的一个著名定理给出了一个充要条件,证明算子的\(2 \times 2\)块矩阵\( \begin{bmatrix} T_1 & X \\ 0 & T_2 \end{bmatrix} \)是一个收缩。我们在环的设定中寻求同样问题的答案,即\(\widetilde{T}_Y=\begin{bmatrix} T_1 & Y\\ 0 & T_2\\ \end{bmatrix} \)在什么条件下成为\(\mathbb {A}_r\) -收缩?对于\(\mathbb {A}_r\) -收缩\(T, T_1,T_2\)和与\(T, T_1,T_2\)交换的算子X,这里我们找到了一个充要条件,使得每个块矩阵$$\begin{aligned} T_X= \begin{bmatrix} T & X\\ 0 & T\\ \end{bmatrix} , \quad \widehat{T}_X=\begin{bmatrix} T_1 & X(T_1-T_2)\\ 0 & T_2\\ \end{bmatrix} \end{aligned}$$都成为\(\mathbb {A}_r\) -收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The \(2 \times 2\) block matrices associated with an annulus

A bounded Hilbert space operator T for which the closure of the annulus

$$\begin{aligned} \mathbb {A}_r=\{z: \ r<|z|<1\} \subseteq \mathbb {C}, \qquad (0<r<1) \end{aligned}$$

is a spectral set is called an \(\mathbb {A}_r\)-contraction. A celebrated theorem due to Douglas, Muhly, and Pearcy gives a necessary and sufficient condition such that a \(2 \times 2\) block matrix of operators \( \begin{bmatrix} T_1 & X \\ 0 & T_2 \end{bmatrix} \) is a contraction. We seek an answer to the same question in the setting of an annulus, i.e., under what conditions does \(\widetilde{T}_Y=\begin{bmatrix} T_1 & Y\\ 0 & T_2\\ \end{bmatrix} \) become an \(\mathbb {A}_r\)-contraction? For \(\mathbb {A}_r\)-contractions \(T, T_1,T_2\) and an operator X that commutes with \(T, T_1,T_2\), here we find a necessary and sufficient condition such that each of the block matrices

$$\begin{aligned} T_X= \begin{bmatrix} T & X\\ 0 & T\\ \end{bmatrix} , \quad \widehat{T}_X=\begin{bmatrix} T_1 & X(T_1-T_2)\\ 0 & T_2\\ \end{bmatrix} \end{aligned}$$

becomes an \(\mathbb {A}_r\)-contraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信