关于Wiman-Valiron不等式的注解

IF 0.5 4区 数学 Q3 MATHEMATICS
Karl-G. Grosse-Erdmann
{"title":"关于Wiman-Valiron不等式的注解","authors":"Karl-G. Grosse-Erdmann","doi":"10.1007/s00013-024-02061-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Wiman–Valiron inequality relates the maximum modulus of an analytic function to its Taylor coefficients via the maximum term. After a short overview of the known results, we obtain a general version of this inequality that seems to have been overlooked in the literature so far. We end the paper with an open problem.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"63 - 74"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the Wiman–Valiron inequality\",\"authors\":\"Karl-G. Grosse-Erdmann\",\"doi\":\"10.1007/s00013-024-02061-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Wiman–Valiron inequality relates the maximum modulus of an analytic function to its Taylor coefficients via the maximum term. After a short overview of the known results, we obtain a general version of this inequality that seems to have been overlooked in the literature so far. We end the paper with an open problem.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 1\",\"pages\":\"63 - 74\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02061-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02061-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Wiman-Valiron不等式通过极大项将解析函数的最大模量与其泰勒系数联系起来。在对已知结果的简短概述之后,我们得到了这个不等式的一般版本,到目前为止,在文献中似乎被忽视了。我们以一个未解决的问题结束论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the Wiman–Valiron inequality

The Wiman–Valiron inequality relates the maximum modulus of an analytic function to its Taylor coefficients via the maximum term. After a short overview of the known results, we obtain a general version of this inequality that seems to have been overlooked in the literature so far. We end the paper with an open problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信