量子颤振的莱维特路径代数

IF 0.5 4区 数学 Q3 MATHEMATICS
Joshua Graham, Rishabh Goswami, Jason Palin
{"title":"量子颤振的莱维特路径代数","authors":"Joshua Graham,&nbsp;Rishabh Goswami,&nbsp;Jason Palin","doi":"10.1007/s00013-024-02067-w","DOIUrl":null,"url":null,"abstract":"<div><p>Adapting a recent work of Brannan et al. on extending graph <span>\\(C^*\\)</span>-algebras to quantum graphs, we introduce “Quantum Quivers” as an analogue of quivers where the edge and vertex set has been replaced by a <span>\\(C^*\\)</span>-algebra and the maps between the sets by <span>\\(*\\)</span>-homomorphisms. Additionally, we develop the theory around these structures and construct a notion of Leavitt path algebra over them and also compute the monoid of finitely generated projective modules over this class of algebras.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 1","pages":"29 - 48"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leavitt path algebras of quantum quivers\",\"authors\":\"Joshua Graham,&nbsp;Rishabh Goswami,&nbsp;Jason Palin\",\"doi\":\"10.1007/s00013-024-02067-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adapting a recent work of Brannan et al. on extending graph <span>\\\\(C^*\\\\)</span>-algebras to quantum graphs, we introduce “Quantum Quivers” as an analogue of quivers where the edge and vertex set has been replaced by a <span>\\\\(C^*\\\\)</span>-algebra and the maps between the sets by <span>\\\\(*\\\\)</span>-homomorphisms. Additionally, we develop the theory around these structures and construct a notion of Leavitt path algebra over them and also compute the monoid of finitely generated projective modules over this class of algebras.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 1\",\"pages\":\"29 - 48\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02067-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02067-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据Brannan等人最近关于将图\(C^*\) -代数扩展到量子图的工作,我们引入了“量子箭窝”作为箭窝的模拟,其中边和顶点集被\(C^*\) -代数取代,集合之间的映射被\(*\) -同态取代。此外,我们围绕这些结构发展了理论,构造了它们上面的Leavitt路径代数的概念,并计算了这类代数上有限生成的射影模的单阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leavitt path algebras of quantum quivers

Adapting a recent work of Brannan et al. on extending graph \(C^*\)-algebras to quantum graphs, we introduce “Quantum Quivers” as an analogue of quivers where the edge and vertex set has been replaced by a \(C^*\)-algebra and the maps between the sets by \(*\)-homomorphisms. Additionally, we develop the theory around these structures and construct a notion of Leavitt path algebra over them and also compute the monoid of finitely generated projective modules over this class of algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信