{"title":"正交金属切削过程中材料流动的亚尺度建模","authors":"Ahmet Semih Erturk, Ragnar Larsson","doi":"10.1007/s12289-025-01875-x","DOIUrl":null,"url":null,"abstract":"<div><p>Enhanced simulation capability for the cutting process is crucial to making quick evaluations of cutting forces and temperatures, which are significant for assessing the machinability of the workpiece material and predicting tool wear. In this paper, the material flow in orthogonal cutting, including primary and secondary shear zones, is represented by a viscous/viscoplastic model that includes the temperature-sensitive Johnson-Cook flow stress model. A stabilized staggered finite element procedure is developed to handle incompressible Navier-Stokes material flow in combination with convection-dominated hardening and thermomechanical interaction. To handle material flow at tool-workpiece contact, a mixed method is used to reduce spurious oscillations in contact stresses along with simplified heat transfer in the tool-workpiece interface. A novel feature is that the velocity field is resolved as a subscale field to the velocity field of the distributed primary zone deformation model. It appears that the finite element solution to the subscale material flow model is significantly more cost-effective in contrast to directly addressing the velocity field and compared to the chip-forming simulations (DEFORM 2D). The cutting forces, temperature, and stress-strain state of the material in the critical deformation regions can be accurately estimated using the subscale model. The results obtained show that the trend of the estimated forces and temperatures is consistent with our experimental measurements, the DEFORM 2D simulations, and the experimental data from the literature.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01875-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Subscale modeling of material flow in orthogonal metal cutting\",\"authors\":\"Ahmet Semih Erturk, Ragnar Larsson\",\"doi\":\"10.1007/s12289-025-01875-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhanced simulation capability for the cutting process is crucial to making quick evaluations of cutting forces and temperatures, which are significant for assessing the machinability of the workpiece material and predicting tool wear. In this paper, the material flow in orthogonal cutting, including primary and secondary shear zones, is represented by a viscous/viscoplastic model that includes the temperature-sensitive Johnson-Cook flow stress model. A stabilized staggered finite element procedure is developed to handle incompressible Navier-Stokes material flow in combination with convection-dominated hardening and thermomechanical interaction. To handle material flow at tool-workpiece contact, a mixed method is used to reduce spurious oscillations in contact stresses along with simplified heat transfer in the tool-workpiece interface. A novel feature is that the velocity field is resolved as a subscale field to the velocity field of the distributed primary zone deformation model. It appears that the finite element solution to the subscale material flow model is significantly more cost-effective in contrast to directly addressing the velocity field and compared to the chip-forming simulations (DEFORM 2D). The cutting forces, temperature, and stress-strain state of the material in the critical deformation regions can be accurately estimated using the subscale model. The results obtained show that the trend of the estimated forces and temperatures is consistent with our experimental measurements, the DEFORM 2D simulations, and the experimental data from the literature.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-025-01875-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01875-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01875-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Subscale modeling of material flow in orthogonal metal cutting
Enhanced simulation capability for the cutting process is crucial to making quick evaluations of cutting forces and temperatures, which are significant for assessing the machinability of the workpiece material and predicting tool wear. In this paper, the material flow in orthogonal cutting, including primary and secondary shear zones, is represented by a viscous/viscoplastic model that includes the temperature-sensitive Johnson-Cook flow stress model. A stabilized staggered finite element procedure is developed to handle incompressible Navier-Stokes material flow in combination with convection-dominated hardening and thermomechanical interaction. To handle material flow at tool-workpiece contact, a mixed method is used to reduce spurious oscillations in contact stresses along with simplified heat transfer in the tool-workpiece interface. A novel feature is that the velocity field is resolved as a subscale field to the velocity field of the distributed primary zone deformation model. It appears that the finite element solution to the subscale material flow model is significantly more cost-effective in contrast to directly addressing the velocity field and compared to the chip-forming simulations (DEFORM 2D). The cutting forces, temperature, and stress-strain state of the material in the critical deformation regions can be accurately estimated using the subscale model. The results obtained show that the trend of the estimated forces and temperatures is consistent with our experimental measurements, the DEFORM 2D simulations, and the experimental data from the literature.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.