Ba(Ce,Fe,Acc)O3-δ体系的电子结构、相形成及缺陷分布

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
R. Merkle, M.F. Hoedl, A. Chesnokov, D. Gryaznov, E. Bucher, E.A. Kotomin, W. Sitte, J. Maier
{"title":"Ba(Ce,Fe,Acc)O3-δ体系的电子结构、相形成及缺陷分布","authors":"R. Merkle, M.F. Hoedl, A. Chesnokov, D. Gryaznov, E. Bucher, E.A. Kotomin, W. Sitte, J. Maier","doi":"10.1016/j.actamat.2025.120739","DOIUrl":null,"url":null,"abstract":"Composites of two perovskites are one possibility to combine protonic and p-type electronic conductivity as required for oxygen electrodes in protonic ceramic electrochemical cells. The BaCeO<sub>3</sub>-BaFeO<sub>3</sub> system can be acceptor-doped to increase proton uptake and transport. However, preceding experiments [C. Berger et al., J. Mater. Chem. A 10 (2022) 2474; C. Nader et al., Solid State Ionics 406 (2024) 116474] indicated that the dopants are inhomogeneously distributed between the two phases, which is decisive for hydration ability and proton conductivity of such composites. Here, we use extended density functional theory calculations (DFT+U, Hubbard approach) for a comprehensive characterization of the BaCeO<sub>3</sub>-BaFeO<sub>3</sub> system including acceptors. Supercells of various compositions are calculated to derive chemical reaction energies, for example for the transfer of defects between the phases. Two key aspects related to the hydration ability of such materials are: (i) The development of the electronic structure with increasing Fe content in a (hypothetical) single-phase BaCe<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> perovskite. (ii) The distribution of acceptors (Ga<sup>3+</sup>, Sc<sup>3+</sup>, In<sup>3+</sup>, Y<sup>3+</sup>) and oxygen vacancies (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span>) between Ce- and Fe-rich phases. The segregation driving forces of acceptor dopant and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span> are calculated individually. <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span> have the largest driving force towards the Fe-rich phase; ion radii and acid/base properties of the different acceptor dopants play a secondary role. The co-segregation of acceptors and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span> into the ferrate phase unfortunately decreases the hydration ability of the Ce-rich proton conductor phase. Analogous trends are expected for related proton- and hole-conductor perovskite composites, which partially counteracts the intended mixed conductivity.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"16 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure, phase formation, and defect distribution in the Ba(Ce,Fe,Acc)O3-δ system\",\"authors\":\"R. Merkle, M.F. Hoedl, A. Chesnokov, D. Gryaznov, E. Bucher, E.A. Kotomin, W. Sitte, J. Maier\",\"doi\":\"10.1016/j.actamat.2025.120739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composites of two perovskites are one possibility to combine protonic and p-type electronic conductivity as required for oxygen electrodes in protonic ceramic electrochemical cells. The BaCeO<sub>3</sub>-BaFeO<sub>3</sub> system can be acceptor-doped to increase proton uptake and transport. However, preceding experiments [C. Berger et al., J. Mater. Chem. A 10 (2022) 2474; C. Nader et al., Solid State Ionics 406 (2024) 116474] indicated that the dopants are inhomogeneously distributed between the two phases, which is decisive for hydration ability and proton conductivity of such composites. Here, we use extended density functional theory calculations (DFT+U, Hubbard approach) for a comprehensive characterization of the BaCeO<sub>3</sub>-BaFeO<sub>3</sub> system including acceptors. Supercells of various compositions are calculated to derive chemical reaction energies, for example for the transfer of defects between the phases. Two key aspects related to the hydration ability of such materials are: (i) The development of the electronic structure with increasing Fe content in a (hypothetical) single-phase BaCe<sub>1-x</sub>Fe<sub>x</sub>O<sub>3</sub> perovskite. (ii) The distribution of acceptors (Ga<sup>3+</sup>, Sc<sup>3+</sup>, In<sup>3+</sup>, Y<sup>3+</sup>) and oxygen vacancies (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span>) between Ce- and Fe-rich phases. The segregation driving forces of acceptor dopant and <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span> are calculated individually. <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span> have the largest driving force towards the Fe-rich phase; ion radii and acid/base properties of the different acceptor dopants play a secondary role. The co-segregation of acceptors and <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span> into the ferrate phase unfortunately decreases the hydration ability of the Ce-rich proton conductor phase. Analogous trends are expected for related proton- and hole-conductor perovskite composites, which partially counteracts the intended mixed conductivity.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.120739\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.120739","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

两种钙钛矿的复合材料是结合质子和p型电子导电性的一种可能性,这是质子陶瓷电化学电池中氧电极所需要的。bafeo3 - bafeo3体系可以通过受体掺杂来增加质子的摄取和转运。然而,先前的实验[C];伯杰等人,马特。化学。A 10 (2022) 2474;C. Nader et al., Solid State Ionics 406(2024) 116474]表明掺杂剂在两相之间分布不均匀,这对复合材料的水化能力和质子电导率起决定性作用。在这里,我们使用扩展密度泛函理论计算(DFT+U, Hubbard方法)对包括受体在内的BaCeO3-BaFeO3体系进行了全面表征。计算各种组成的超级电池,以得出化学反应的能量,例如在相之间转移缺陷的能量。与此类材料水化能力相关的两个关键方面是:(i)在(假设的)单相BaCe1-xFexO3钙钛矿中,随着Fe含量的增加,电子结构的发展。(ii)受体(Ga3+、Sc3+、In3+、Y3+)和氧空位(VO••VO••)在富Ce和富fe相之间的分布。分别计算了受体掺杂剂和VO••VO••的偏析驱动力。VO••VO••对富铁相的驱动力最大;离子半径和不同受体掺杂剂的酸碱性质起次要作用。受体和VO••VO••在高铁酸盐相中的共分离降低了富ce质子导体相的水化能力。类似的趋势预计相关的质子和空穴导体钙钛矿复合材料,这部分抵消了预期的混合电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic structure, phase formation, and defect distribution in the Ba(Ce,Fe,Acc)O3-δ system

Electronic structure, phase formation, and defect distribution in the Ba(Ce,Fe,Acc)O3-δ system
Composites of two perovskites are one possibility to combine protonic and p-type electronic conductivity as required for oxygen electrodes in protonic ceramic electrochemical cells. The BaCeO3-BaFeO3 system can be acceptor-doped to increase proton uptake and transport. However, preceding experiments [C. Berger et al., J. Mater. Chem. A 10 (2022) 2474; C. Nader et al., Solid State Ionics 406 (2024) 116474] indicated that the dopants are inhomogeneously distributed between the two phases, which is decisive for hydration ability and proton conductivity of such composites. Here, we use extended density functional theory calculations (DFT+U, Hubbard approach) for a comprehensive characterization of the BaCeO3-BaFeO3 system including acceptors. Supercells of various compositions are calculated to derive chemical reaction energies, for example for the transfer of defects between the phases. Two key aspects related to the hydration ability of such materials are: (i) The development of the electronic structure with increasing Fe content in a (hypothetical) single-phase BaCe1-xFexO3 perovskite. (ii) The distribution of acceptors (Ga3+, Sc3+, In3+, Y3+) and oxygen vacancies (VO) between Ce- and Fe-rich phases. The segregation driving forces of acceptor dopant and VO are calculated individually. VO have the largest driving force towards the Fe-rich phase; ion radii and acid/base properties of the different acceptor dopants play a secondary role. The co-segregation of acceptors and VO into the ferrate phase unfortunately decreases the hydration ability of the Ce-rich proton conductor phase. Analogous trends are expected for related proton- and hole-conductor perovskite composites, which partially counteracts the intended mixed conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信