Luam Silva de Paiva, Julia G S Rocha, Joelson D V Hermes, Matheus Hansen, Ricardo Luiz Viana, Iberê Luiz Caldas, Rene O Medrano-T, Diogo Ricardo da Costa
{"title":"合成logistic -高斯映射的动力学性质。","authors":"Luam Silva de Paiva, Julia G S Rocha, Joelson D V Hermes, Matheus Hansen, Ricardo Luiz Viana, Iberê Luiz Caldas, Rene O Medrano-T, Diogo Ricardo da Costa","doi":"10.1063/5.0238591","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic-Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps. This theory enhances our perception of structural organization and offers valuable perceptions of the system behaviors, contributing to an expanded understanding of chaos and periodicity in dynamic systems. The analysis reveals Complex Sets of Periodicity (CSP) in the parameter space, characterized by superstable curves that traverse their main bodies. The exploration of different combinations of parameters shows cascades of CSP structures with added periods and are organized based on extreme curves. This investigation offers valuable discoveries of the dynamics of dissipative mappings, opening avenues for future explorations in chaotic systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical properties of the composed Logistic-Gauss map.\",\"authors\":\"Luam Silva de Paiva, Julia G S Rocha, Joelson D V Hermes, Matheus Hansen, Ricardo Luiz Viana, Iberê Luiz Caldas, Rene O Medrano-T, Diogo Ricardo da Costa\",\"doi\":\"10.1063/5.0238591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic-Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps. This theory enhances our perception of structural organization and offers valuable perceptions of the system behaviors, contributing to an expanded understanding of chaos and periodicity in dynamic systems. The analysis reveals Complex Sets of Periodicity (CSP) in the parameter space, characterized by superstable curves that traverse their main bodies. The exploration of different combinations of parameters shows cascades of CSP structures with added periods and are organized based on extreme curves. This investigation offers valuable discoveries of the dynamics of dissipative mappings, opening avenues for future explorations in chaotic systems.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0238591\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0238591","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamical properties of the composed Logistic-Gauss map.
This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic-Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps. This theory enhances our perception of structural organization and offers valuable perceptions of the system behaviors, contributing to an expanded understanding of chaos and periodicity in dynamic systems. The analysis reveals Complex Sets of Periodicity (CSP) in the parameter space, characterized by superstable curves that traverse their main bodies. The exploration of different combinations of parameters shows cascades of CSP structures with added periods and are organized based on extreme curves. This investigation offers valuable discoveries of the dynamics of dissipative mappings, opening avenues for future explorations in chaotic systems.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.