基于时空图拉普拉斯的时变网络聚类。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0228419
Maia Trower, Natasa Djurdjevac Conrad, Stefan Klus
{"title":"基于时空图拉普拉斯的时变网络聚类。","authors":"Maia Trower, Natasa Djurdjevac Conrad, Stefan Klus","doi":"10.1063/5.0228419","DOIUrl":null,"url":null,"abstract":"<p><p>Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatiotemporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatiotemporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering time-evolving networks using the spatiotemporal graph Laplacian.\",\"authors\":\"Maia Trower, Natasa Djurdjevac Conrad, Stefan Klus\",\"doi\":\"10.1063/5.0228419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatiotemporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatiotemporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228419\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0228419","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当对复杂的动态系统(如社会网络、交通流和生物过程)建模时,时间演化图经常出现。开发识别和分析这些时变图结构中的群落的技术是一个重要的挑战。在这项工作中,我们利用典型相关分析将现有的光谱聚类算法从静态图推广到动态图,以捕捉聚类的时间演变。在此基础上,我们定义了时空图拉普拉斯算子,并研究了其谱性质。我们通过传递算子将这些概念与动力系统理论联系起来,并通过与现有方法的比较说明了我们的方法在基准图上的优势。我们表明,时空图拉普拉斯可以清楚地解释有向图和无向图的簇结构随时间的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering time-evolving networks using the spatiotemporal graph Laplacian.

Time-evolving graphs arise frequently when modeling complex dynamical systems such as social networks, traffic flow, and biological processes. Developing techniques to identify and analyze communities in these time-varying graph structures is an important challenge. In this work, we generalize existing spectral clustering algorithms from static to dynamic graphs using canonical correlation analysis to capture the temporal evolution of clusters. Based on this extended canonical correlation framework, we define the spatiotemporal graph Laplacian and investigate its spectral properties. We connect these concepts to dynamical systems theory via transfer operators and illustrate the advantages of our method on benchmark graphs by comparison with existing methods. We show that the spatiotemporal graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信