Gustavo Gomes de Sousa, João B. L. Martins, José Roberto dos Santos Politi
{"title":"OH自由基氧化降解1,4-二氧六烷的机理和动力学研究:计算量子化学研究","authors":"Gustavo Gomes de Sousa, João B. L. Martins, José Roberto dos Santos Politi","doi":"10.1002/jcc.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways. The reaction rate constants, employing Deformed Transition State Theory (d-TST), are consistently higher for axial abstraction. The preference for axial hydrogen abstraction, solvation effects on transition states, and temperature-dependent rate constants are highlighted. Furthermore, the identification of carbon–carbon orbital distortion suggests potential bond breakage. This research provides valuable insights into the reaction between 1,4-dioxane and OH radical across different solvation models and enhances the understanding of the advanced oxidative process.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Mechanism and Kinetics of 1,4-Dioxane Oxidative Degradation by OH Radical: A Computational Quantum Chemistry Investigation\",\"authors\":\"Gustavo Gomes de Sousa, João B. L. Martins, José Roberto dos Santos Politi\",\"doi\":\"10.1002/jcc.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways. The reaction rate constants, employing Deformed Transition State Theory (d-TST), are consistently higher for axial abstraction. The preference for axial hydrogen abstraction, solvation effects on transition states, and temperature-dependent rate constants are highlighted. Furthermore, the identification of carbon–carbon orbital distortion suggests potential bond breakage. This research provides valuable insights into the reaction between 1,4-dioxane and OH radical across different solvation models and enhances the understanding of the advanced oxidative process.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70018\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring Mechanism and Kinetics of 1,4-Dioxane Oxidative Degradation by OH Radical: A Computational Quantum Chemistry Investigation
This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways. The reaction rate constants, employing Deformed Transition State Theory (d-TST), are consistently higher for axial abstraction. The preference for axial hydrogen abstraction, solvation effects on transition states, and temperature-dependent rate constants are highlighted. Furthermore, the identification of carbon–carbon orbital distortion suggests potential bond breakage. This research provides valuable insights into the reaction between 1,4-dioxane and OH radical across different solvation models and enhances the understanding of the advanced oxidative process.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.