Shruthi Rengarajan, Jason Derks, Daniel W. Bellott, Nikolai Slavov, David C. Page
{"title":"人RNA解旋酶DDX3X和DDX3Y的转录后交叉和自动调节缓冲表达","authors":"Shruthi Rengarajan, Jason Derks, Daniel W. Bellott, Nikolai Slavov, David C. Page","doi":"10.1101/gr.279707.124","DOIUrl":null,"url":null,"abstract":"The Y-linked gene <em>DDX3Y</em> and its X-linked homolog <em>DDX3X</em> survived the evolution of the human sex chromosomes from ordinary autosomes. <em>DDX3X</em> encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, <em>DDX3X</em> is extraordinarily dosage sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y Chromosomes increases, <em>DDX3X</em> transcript levels fall; conversely, when the number of X Chromosomes increases, <em>DDX3Y</em> transcript levels fall. In 46,XY cells, CRISPRi knockdown of either <em>DDX3X</em> or <em>DDX3Y</em> causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in <em>DDX3X</em> transcript levels. Thus, perturbation of either <em>DDX3X</em> or <em>DDX3Y</em> expression is buffered: by negative cross-regulation of <em>DDX3X</em> and <em>DDX3Y</em> in 46,XY cells and by negative auto-regulation of <em>DDX3X</em> in 46,XX cells. <em>DDX3X</em>–<em>DDX3Y</em> cross-regulation is mediated through mRNA destabilization—as shown by metabolic labeling of newly transcribed RNA—and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) <em>DDX3X</em> gene transmuted into auto- and cross-regulation of <em>DDX3X</em> and <em>DDX3Y</em> as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"26 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y\",\"authors\":\"Shruthi Rengarajan, Jason Derks, Daniel W. Bellott, Nikolai Slavov, David C. Page\",\"doi\":\"10.1101/gr.279707.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Y-linked gene <em>DDX3Y</em> and its X-linked homolog <em>DDX3X</em> survived the evolution of the human sex chromosomes from ordinary autosomes. <em>DDX3X</em> encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, <em>DDX3X</em> is extraordinarily dosage sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y Chromosomes increases, <em>DDX3X</em> transcript levels fall; conversely, when the number of X Chromosomes increases, <em>DDX3Y</em> transcript levels fall. In 46,XY cells, CRISPRi knockdown of either <em>DDX3X</em> or <em>DDX3Y</em> causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in <em>DDX3X</em> transcript levels. Thus, perturbation of either <em>DDX3X</em> or <em>DDX3Y</em> expression is buffered: by negative cross-regulation of <em>DDX3X</em> and <em>DDX3Y</em> in 46,XY cells and by negative auto-regulation of <em>DDX3X</em> in 46,XX cells. <em>DDX3X</em>–<em>DDX3Y</em> cross-regulation is mediated through mRNA destabilization—as shown by metabolic labeling of newly transcribed RNA—and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) <em>DDX3X</em> gene transmuted into auto- and cross-regulation of <em>DDX3X</em> and <em>DDX3Y</em> as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279707.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279707.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y Chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X Chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered: by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X–DDX3Y cross-regulation is mediated through mRNA destabilization—as shown by metabolic labeling of newly transcribed RNA—and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3X gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.