单细胞快速捕获杂交测序可靠地检测同种异构体的使用和编码突变的目标基因

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hongke Peng, Jafar S. Jabbari, Luyi Tian, Changqing Wang, Yupei You, Chong Chyn Chua, Natasha S. Anstee, Noorul Amin, Andrew H. Wei, Nadia Davidson, Andrew W. Roberts, David Huang, Matthew E Ritchie, Rachel Thijssen
{"title":"单细胞快速捕获杂交测序可靠地检测同种异构体的使用和编码突变的目标基因","authors":"Hongke Peng, Jafar S. Jabbari, Luyi Tian, Changqing Wang, Yupei You, Chong Chyn Chua, Natasha S. Anstee, Noorul Amin, Andrew H. Wei, Nadia Davidson, Andrew W. Roberts, David Huang, Matthew E Ritchie, Rachel Thijssen","doi":"10.1101/gr.279322.124","DOIUrl":null,"url":null,"abstract":"Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest. The method includes creating a probe panel for transcript capture, using barcoded primers for pooling and efficient sequencing via Oxford Nanopore Technologies platforms. scRaCH-seq is applicable to stored and indexed single-cell cDNA which allows analysis to be combined with existing short-read RNA-seq datasets. In our investigation of <em>BTK</em> and <em>SF3B1</em> genes in samples from patients with chronic lymphocytic leukaemia (CLL), we detected <em>SF3B1</em> isoforms and mutations with high sensitivity. Integration with short-read scRNA-seq data revealed significant gene expression differences in <em>SF3B1</em>-mutated CLL cells, though it did not impact the sensitivity of the anti-cancer drug venetoclax. scRaCH-seq's capability to study long-read transcripts of multiple genes makes it a powerful tool for single-cell genomics.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"36 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell Rapid Capture Hybridization sequencing to reliably detect isoform usage and coding mutations in targeted genes\",\"authors\":\"Hongke Peng, Jafar S. Jabbari, Luyi Tian, Changqing Wang, Yupei You, Chong Chyn Chua, Natasha S. Anstee, Noorul Amin, Andrew H. Wei, Nadia Davidson, Andrew W. Roberts, David Huang, Matthew E Ritchie, Rachel Thijssen\",\"doi\":\"10.1101/gr.279322.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest. The method includes creating a probe panel for transcript capture, using barcoded primers for pooling and efficient sequencing via Oxford Nanopore Technologies platforms. scRaCH-seq is applicable to stored and indexed single-cell cDNA which allows analysis to be combined with existing short-read RNA-seq datasets. In our investigation of <em>BTK</em> and <em>SF3B1</em> genes in samples from patients with chronic lymphocytic leukaemia (CLL), we detected <em>SF3B1</em> isoforms and mutations with high sensitivity. Integration with short-read scRNA-seq data revealed significant gene expression differences in <em>SF3B1</em>-mutated CLL cells, though it did not impact the sensitivity of the anti-cancer drug venetoclax. scRaCH-seq's capability to study long-read transcripts of multiple genes makes it a powerful tool for single-cell genomics.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279322.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279322.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞长读测序改变了我们对异构体使用和细胞间突变异质性的理解。尽管进行了无偏见的深入分析,但低测序通量往往导致读取覆盖率不足,从而限制了我们对特定基因进行突变调用的能力。在这里,我们开发了一种单细胞快速捕获杂交测序(scRaCH-seq)方法,该方法在使用长读测序捕获目标转录本方面表现出高特异性和高效率,允许对感兴趣基因的突变状态和转录本使用进行深入分析。该方法包括创建一个用于转录捕获的探针面板,使用条形码引物通过Oxford Nanopore Technologies平台进行池化和高效测序。scRaCH-seq适用于存储和索引的单细胞cDNA,允许分析与现有的短读RNA-seq数据集相结合。在我们对慢性淋巴细胞白血病(CLL)患者样本中BTK和SF3B1基因的研究中,我们以高灵敏度检测到SF3B1亚型和突变。与短读scRNA-seq数据的整合显示,sf3b1突变的CLL细胞中基因表达存在显著差异,但不影响抗癌药物venetoclax的敏感性。scRaCH-seq研究多基因长读转录本的能力使其成为单细胞基因组学的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-cell Rapid Capture Hybridization sequencing to reliably detect isoform usage and coding mutations in targeted genes
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest. The method includes creating a probe panel for transcript capture, using barcoded primers for pooling and efficient sequencing via Oxford Nanopore Technologies platforms. scRaCH-seq is applicable to stored and indexed single-cell cDNA which allows analysis to be combined with existing short-read RNA-seq datasets. In our investigation of BTK and SF3B1 genes in samples from patients with chronic lymphocytic leukaemia (CLL), we detected SF3B1 isoforms and mutations with high sensitivity. Integration with short-read scRNA-seq data revealed significant gene expression differences in SF3B1-mutated CLL cells, though it did not impact the sensitivity of the anti-cancer drug venetoclax. scRaCH-seq's capability to study long-read transcripts of multiple genes makes it a powerful tool for single-cell genomics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信