Bing Bai, Haiyan Wu, Qingke Nie, Jingjing Liu, Xiangxin Jia
{"title":"适用于高碱度赤泥滤液的颗粒热力学迁移模型及试验验证","authors":"Bing Bai, Haiyan Wu, Qingke Nie, Jingjing Liu, Xiangxin Jia","doi":"10.1002/nag.3946","DOIUrl":null,"url":null,"abstract":"A theoretical model of the migration process of high‐alkalinity red mud particles in porous media was derived from granular thermodynamics, complying with the complementary motion process of two‐phase flows (i.e., hydroxide ions and red mud powder). From the perspective of energy dissipation provoked by particle migration and molecular thermal motion, a migration model of hydroxide ions and suspended particles under mixed conditions was established. This model naturally considers the complex adsorption/desorption process between hydroxide ions (or red mud particles) and a porous medium solid matrix, as well as between hydroxide ions and red mud particles. Moreover, the model reveals the dynamic process and deposition effect of suspended powder under multiphase interactions during temporal and spatial variations. The migration progression of suspended substances in the process of transient injection of red mud filtrate with different pH values and the continuous change in red mud particle injection were verified by experiments.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"36 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granular Thermodynamic Migration Model Suitable for High‐Alkalinity Red Mud Filtrates and Test Verification\",\"authors\":\"Bing Bai, Haiyan Wu, Qingke Nie, Jingjing Liu, Xiangxin Jia\",\"doi\":\"10.1002/nag.3946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical model of the migration process of high‐alkalinity red mud particles in porous media was derived from granular thermodynamics, complying with the complementary motion process of two‐phase flows (i.e., hydroxide ions and red mud powder). From the perspective of energy dissipation provoked by particle migration and molecular thermal motion, a migration model of hydroxide ions and suspended particles under mixed conditions was established. This model naturally considers the complex adsorption/desorption process between hydroxide ions (or red mud particles) and a porous medium solid matrix, as well as between hydroxide ions and red mud particles. Moreover, the model reveals the dynamic process and deposition effect of suspended powder under multiphase interactions during temporal and spatial variations. The migration progression of suspended substances in the process of transient injection of red mud filtrate with different pH values and the continuous change in red mud particle injection were verified by experiments.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3946\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Granular Thermodynamic Migration Model Suitable for High‐Alkalinity Red Mud Filtrates and Test Verification
A theoretical model of the migration process of high‐alkalinity red mud particles in porous media was derived from granular thermodynamics, complying with the complementary motion process of two‐phase flows (i.e., hydroxide ions and red mud powder). From the perspective of energy dissipation provoked by particle migration and molecular thermal motion, a migration model of hydroxide ions and suspended particles under mixed conditions was established. This model naturally considers the complex adsorption/desorption process between hydroxide ions (or red mud particles) and a porous medium solid matrix, as well as between hydroxide ions and red mud particles. Moreover, the model reveals the dynamic process and deposition effect of suspended powder under multiphase interactions during temporal and spatial variations. The migration progression of suspended substances in the process of transient injection of red mud filtrate with different pH values and the continuous change in red mud particle injection were verified by experiments.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.