Shmuel Orenstein, Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, Jeremias Sulam
{"title":"ProxiMO:定量敏感性映射的近端多算子网络。","authors":"Shmuel Orenstein, Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, Jeremias Sulam","doi":"10.1007/978-3-031-78761-4_2","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative Susceptibility Mapping (QSM) is a technique that derives tissue magnetic susceptibility distributions from phase measurements obtained through Magnetic Resonance (MR) imaging. This involves solving an ill-posed dipole inversion problem, however, and thus time-consuming and cumbersome data acquisition from several distinct head orientations becomes necessary to obtain an accurate solution. Most recent (supervised) deep learning methods for single-phase QSM require training data obtained via multiple orientations. In this work, we present an alternative unsupervised learning approach that can efficiently train on single-orientation measurement data alone, named ProxiMO (Proximal Multi-Operator), combining Learned Proximal Convolutional Neural Networks (LP-CNN) with multi-operator imaging (MOI). This integration enables LP-CNN training for QSM on single-phase data without ground truth reconstructions. We further introduce a semi-supervised variant, which further boosts the reconstruction performance, compared to the traditional supervised fashions. Extensive experiments on multicenter datasets illustrate the advantage of unsupervised training and the superiority of the proposed approach for QSM reconstruction. Code is available at https://github.com/shmuelor/ProxiMO.</p>","PeriodicalId":520367,"journal":{"name":"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)","volume":"15266 ","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705005/pdf/","citationCount":"0","resultStr":"{\"title\":\"ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping.\",\"authors\":\"Shmuel Orenstein, Zhenghan Fang, Hyeong-Geol Shin, Peter van Zijl, Xu Li, Jeremias Sulam\",\"doi\":\"10.1007/978-3-031-78761-4_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative Susceptibility Mapping (QSM) is a technique that derives tissue magnetic susceptibility distributions from phase measurements obtained through Magnetic Resonance (MR) imaging. This involves solving an ill-posed dipole inversion problem, however, and thus time-consuming and cumbersome data acquisition from several distinct head orientations becomes necessary to obtain an accurate solution. Most recent (supervised) deep learning methods for single-phase QSM require training data obtained via multiple orientations. In this work, we present an alternative unsupervised learning approach that can efficiently train on single-orientation measurement data alone, named ProxiMO (Proximal Multi-Operator), combining Learned Proximal Convolutional Neural Networks (LP-CNN) with multi-operator imaging (MOI). This integration enables LP-CNN training for QSM on single-phase data without ground truth reconstructions. We further introduce a semi-supervised variant, which further boosts the reconstruction performance, compared to the traditional supervised fashions. Extensive experiments on multicenter datasets illustrate the advantage of unsupervised training and the superiority of the proposed approach for QSM reconstruction. Code is available at https://github.com/shmuelor/ProxiMO.</p>\",\"PeriodicalId\":520367,\"journal\":{\"name\":\"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)\",\"volume\":\"15266 \",\"pages\":\"13-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-78761-4_2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-78761-4_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping.
Quantitative Susceptibility Mapping (QSM) is a technique that derives tissue magnetic susceptibility distributions from phase measurements obtained through Magnetic Resonance (MR) imaging. This involves solving an ill-posed dipole inversion problem, however, and thus time-consuming and cumbersome data acquisition from several distinct head orientations becomes necessary to obtain an accurate solution. Most recent (supervised) deep learning methods for single-phase QSM require training data obtained via multiple orientations. In this work, we present an alternative unsupervised learning approach that can efficiently train on single-orientation measurement data alone, named ProxiMO (Proximal Multi-Operator), combining Learned Proximal Convolutional Neural Networks (LP-CNN) with multi-operator imaging (MOI). This integration enables LP-CNN training for QSM on single-phase data without ground truth reconstructions. We further introduce a semi-supervised variant, which further boosts the reconstruction performance, compared to the traditional supervised fashions. Extensive experiments on multicenter datasets illustrate the advantage of unsupervised training and the superiority of the proposed approach for QSM reconstruction. Code is available at https://github.com/shmuelor/ProxiMO.