{"title":"Slco4a1和Slco1b2在内环境紊乱性肝癌小鼠模型中的差异表达和分布","authors":"Haoxuan Luo, Yang Xie, Shan Huang, Yu Zhang","doi":"10.2174/0115748928351523241204071335","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to enhance the understanding of underlying mechanisms and potential therapies of the solute carrier organic anion (SLCO) transporter family in internal environment disorder (IED)-induced hepatocellular carcinoma (HCC). This could lead to new therapeutic strategies and offer new directions for the creation of new patents for HCC treatment products.</p><p><strong>Methods: </strong>The orthotopic transplantation (OT), IED and IED-based OT (IED-OT) mouse models were established. Expression patterns of Slco4a1 and Slco1b2 were determined using reverse transcriptionquantitative polymerase chain reaction (RT-qPCR), western blotting (WB) and immunohistochemistry (IHC) in various tissues, including lung, stomach, liver, spleen, kidney, colon, small intestine, HCC tissues and adjacent non-cancerous tissues.</p><p><strong>Results: </strong>Animals exhibited symptoms, including weight loss, lethargy, chills, dyspnea, altered hair texture, and gastrointestinal disturbances, confirming the successful establishment of the IED model. The analysis demonstrated differential expression and tissue-specific distribution of Slco4a1 and Slco1b2, which are associated with IED-induced changes. These alterations potentially disrupt organ transport functions, thereby promoting the development of HCC. Additionally, they suggest a role in rebalancing the tumor microenvironment and mitigating damage resulting from abnormal substance accumulation.</p><p><strong>Conclusions: </strong>Changes in SLCO expression and distribution induced by IED may play pivotal roles in the development of HCC. These findings contribute insights that could inform novel therapeutic strategies against HCC.</p>","PeriodicalId":94186,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Expression and Distribution of Slco4a1 and Slco1b2 in an Internal Environment Disorder-induced Hepatocellular Carcinoma Mouse Model.\",\"authors\":\"Haoxuan Luo, Yang Xie, Shan Huang, Yu Zhang\",\"doi\":\"10.2174/0115748928351523241204071335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to enhance the understanding of underlying mechanisms and potential therapies of the solute carrier organic anion (SLCO) transporter family in internal environment disorder (IED)-induced hepatocellular carcinoma (HCC). This could lead to new therapeutic strategies and offer new directions for the creation of new patents for HCC treatment products.</p><p><strong>Methods: </strong>The orthotopic transplantation (OT), IED and IED-based OT (IED-OT) mouse models were established. Expression patterns of Slco4a1 and Slco1b2 were determined using reverse transcriptionquantitative polymerase chain reaction (RT-qPCR), western blotting (WB) and immunohistochemistry (IHC) in various tissues, including lung, stomach, liver, spleen, kidney, colon, small intestine, HCC tissues and adjacent non-cancerous tissues.</p><p><strong>Results: </strong>Animals exhibited symptoms, including weight loss, lethargy, chills, dyspnea, altered hair texture, and gastrointestinal disturbances, confirming the successful establishment of the IED model. The analysis demonstrated differential expression and tissue-specific distribution of Slco4a1 and Slco1b2, which are associated with IED-induced changes. These alterations potentially disrupt organ transport functions, thereby promoting the development of HCC. Additionally, they suggest a role in rebalancing the tumor microenvironment and mitigating damage resulting from abnormal substance accumulation.</p><p><strong>Conclusions: </strong>Changes in SLCO expression and distribution induced by IED may play pivotal roles in the development of HCC. These findings contribute insights that could inform novel therapeutic strategies against HCC.</p>\",\"PeriodicalId\":94186,\"journal\":{\"name\":\"Recent patents on anti-cancer drug discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-cancer drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748928351523241204071335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115748928351523241204071335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Expression and Distribution of Slco4a1 and Slco1b2 in an Internal Environment Disorder-induced Hepatocellular Carcinoma Mouse Model.
Objective: This study aims to enhance the understanding of underlying mechanisms and potential therapies of the solute carrier organic anion (SLCO) transporter family in internal environment disorder (IED)-induced hepatocellular carcinoma (HCC). This could lead to new therapeutic strategies and offer new directions for the creation of new patents for HCC treatment products.
Methods: The orthotopic transplantation (OT), IED and IED-based OT (IED-OT) mouse models were established. Expression patterns of Slco4a1 and Slco1b2 were determined using reverse transcriptionquantitative polymerase chain reaction (RT-qPCR), western blotting (WB) and immunohistochemistry (IHC) in various tissues, including lung, stomach, liver, spleen, kidney, colon, small intestine, HCC tissues and adjacent non-cancerous tissues.
Results: Animals exhibited symptoms, including weight loss, lethargy, chills, dyspnea, altered hair texture, and gastrointestinal disturbances, confirming the successful establishment of the IED model. The analysis demonstrated differential expression and tissue-specific distribution of Slco4a1 and Slco1b2, which are associated with IED-induced changes. These alterations potentially disrupt organ transport functions, thereby promoting the development of HCC. Additionally, they suggest a role in rebalancing the tumor microenvironment and mitigating damage resulting from abnormal substance accumulation.
Conclusions: Changes in SLCO expression and distribution induced by IED may play pivotal roles in the development of HCC. These findings contribute insights that could inform novel therapeutic strategies against HCC.