Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn
{"title":"基于pca的高性能空间域识别。","authors":"Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn","doi":"10.1093/bioinformatics/btaf005","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.</p><p><strong>Results: </strong>Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/imsb-uke/nichepca.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761416/pdf/","citationCount":"0","resultStr":"{\"title\":\"PCA-based spatial domain identification with state-of-the-art performance.\",\"authors\":\"Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn\",\"doi\":\"10.1093/bioinformatics/btaf005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.</p><p><strong>Results: </strong>Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/imsb-uke/nichepca.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PCA-based spatial domain identification with state-of-the-art performance.
Motivation: The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.
Results: Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.
Availability and implementation: The code is available at https://github.com/imsb-uke/nichepca.