FlowPacker:具有扭流匹配的蛋白质侧链填料。

Jin Sub Lee, Philip M Kim
{"title":"FlowPacker:具有扭流匹配的蛋白质侧链填料。","authors":"Jin Sub Lee, Philip M Kim","doi":"10.1093/bioinformatics/btaf010","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.</p><p><strong>Results: </strong>Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime. We further show that FlowPacker can be used to inpaint missing side-chain coordinates and also for multimeric targets, and exhibits strong performance on a test set of antibody-antigen complexes.</p><p><strong>Availability: </strong>Code is available at https://gitlab.com/mjslee0921/flowpacker.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlowPacker: Protein side-chain packing with torsional flow matching.\",\"authors\":\"Jin Sub Lee, Philip M Kim\",\"doi\":\"10.1093/bioinformatics/btaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.</p><p><strong>Results: </strong>Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime. We further show that FlowPacker can be used to inpaint missing side-chain coordinates and also for multimeric targets, and exhibits strong performance on a test set of antibody-antigen complexes.</p><p><strong>Availability: </strong>Code is available at https://gitlab.com/mjslee0921/flowpacker.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:准确预测蛋白质侧链构象对于理解蛋白质折叠、蛋白质相互作用和促进蛋白质从头设计是必要的。结果:本文应用扭转流匹配和等变图关注开发了FlowPacker模型,该模型能够快速预测蛋白质侧链构象,并以蛋白质序列和主链为条件。我们发现,FlowPacker在大多数指标上都优于之前最先进的基准,并改善了运行时间。我们进一步表明,FlowPacker可以用于填补缺失的侧链坐标,也可以用于多聚靶标,并且在抗体-抗原复合物的测试集上表现出很强的性能。可用性:代码可在https://gitlab.com/mjslee0921/flowpacker.Supplementary上获得;补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlowPacker: Protein side-chain packing with torsional flow matching.

Motivation: Accurate prediction of protein side-chain conformations is necessary to understand protein folding, protein-protein interactions and facilitate de novo protein design.

Results: Here we apply torsional flow matching and equivariant graph attention to develop FlowPacker, a fast and performant model to predict protein side-chain conformations conditioned on the protein sequence and backbone. We show that FlowPacker outperforms previous state-of-the-art baselines across most metrics with improved runtime. We further show that FlowPacker can be used to inpaint missing side-chain coordinates and also for multimeric targets, and exhibits strong performance on a test set of antibody-antigen complexes.

Availability: Code is available at https://gitlab.com/mjslee0921/flowpacker.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信