基因组反应的贝叶斯基因集基准剂量估计。

Daniel Zilber, Kyle P Messier, John House, Fred Parham, Scott S Auerbach, Matthew W Wheeler
{"title":"基因组反应的贝叶斯基因集基准剂量估计。","authors":"Daniel Zilber, Kyle P Messier, John House, Fred Parham, Scott S Auerbach, Matthew W Wheeler","doi":"10.1093/bioinformatics/btaf008","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets. Our approach extends the foundational univariate approach by accounting for correlation in a statistically principled way.</p><p><strong>Results: </strong>We illustrate the method using data from a 5-day rat study and Hallmark gene sets and compare to existing BMD results computed by the EPA for both gene sets and apical histopathology endpoints. In contrast to previous ad-hoc methods, our principled approach provides the needed extension to bring the foundational univariate method into the multivariate world of transcriptomics. In addition to use in a regulatory setting, our method can provide hypothesis generation when gene sets correspond to mechanistic pathways.</p><p><strong>Availability and implementation: </strong>BS-BMD is implemented in R and C++ and available at https://github.com/NIEHS/BS-BMD.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783320/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian gene set benchmark dose estimation for \\\"omic\\\" responses.\",\"authors\":\"Daniel Zilber, Kyle P Messier, John House, Fred Parham, Scott S Auerbach, Matthew W Wheeler\",\"doi\":\"10.1093/bioinformatics/btaf008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets. Our approach extends the foundational univariate approach by accounting for correlation in a statistically principled way.</p><p><strong>Results: </strong>We illustrate the method using data from a 5-day rat study and Hallmark gene sets and compare to existing BMD results computed by the EPA for both gene sets and apical histopathology endpoints. In contrast to previous ad-hoc methods, our principled approach provides the needed extension to bring the foundational univariate method into the multivariate world of transcriptomics. In addition to use in a regulatory setting, our method can provide hypothesis generation when gene sets correspond to mechanistic pathways.</p><p><strong>Availability and implementation: </strong>BS-BMD is implemented in R and C++ and available at https://github.com/NIEHS/BS-BMD.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:使用基准剂量(BMD)等工具估计毒性参考点是制定管制污染和确保安全环境的政策的关键步骤。毒性可以在不同的终点进行测量,包括各种组织的基因表达和组织病理学的变化,并且通常在忽略相关性的单变量设置中一次探索一个基因或组织。在这项工作中,我们开发了一个多变量估计程序来估计特定基因集的骨密度。我们的方法通过以统计原则的方式计算相关性,扩展了基本的单变量方法。结果:我们使用来自5天大鼠研究和Hallmark基因集的数据来说明该方法,并将基因集和根尖组织病理学终点与EPA计算的现有骨密度结果进行比较。与以前的特设方法相比,我们的原则方法提供了必要的扩展,将基本的单变量方法带入转录组学的多变量世界。除了在调控设置中使用外,我们的方法还可以在基因集对应于机制途径时提供假设生成。可用性和实现:BS-BMD是用R和c++实现的,可在https://github.com/NIEHS/BS-BMD.Supplementary上获得信息:补充数据可在期刊名称上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian gene set benchmark dose estimation for "omic" responses.

Motivation: Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets. Our approach extends the foundational univariate approach by accounting for correlation in a statistically principled way.

Results: We illustrate the method using data from a 5-day rat study and Hallmark gene sets and compare to existing BMD results computed by the EPA for both gene sets and apical histopathology endpoints. In contrast to previous ad-hoc methods, our principled approach provides the needed extension to bring the foundational univariate method into the multivariate world of transcriptomics. In addition to use in a regulatory setting, our method can provide hypothesis generation when gene sets correspond to mechanistic pathways.

Availability and implementation: BS-BMD is implemented in R and C++ and available at https://github.com/NIEHS/BS-BMD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信