探索显微镜图像表示的自监督学习偏差。

Biological imaging Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.1017/S2633903X2400014X
Ihab Bendidi, Adrien Bardes, Ethan Cohen, Alexis Lamiable, Guillaume Bollot, Auguste Genovesio
{"title":"探索显微镜图像表示的自监督学习偏差。","authors":"Ihab Bendidi, Adrien Bardes, Ethan Cohen, Alexis Lamiable, Guillaume Bollot, Auguste Genovesio","doi":"10.1017/S2633903X2400014X","DOIUrl":null,"url":null,"abstract":"<p><p>Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype differences. We reveal that transformation design acts as a form of either unwanted or beneficial supervision, impacting feature clustering and representation relevance. Importantly, these effects vary based on class labels in a supervised dataset. In microscopy images, transformation design significantly influences the representation, introducing imperceptible yet strong biases. We demonstrate that strategic transformation selection, based on desired feature invariance, drastically improves classification performance and representation quality, even with limited training samples.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":"4 ","pages":"e12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring self-supervised learning biases for microscopy image representation.\",\"authors\":\"Ihab Bendidi, Adrien Bardes, Ethan Cohen, Alexis Lamiable, Guillaume Bollot, Auguste Genovesio\",\"doi\":\"10.1017/S2633903X2400014X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype differences. We reveal that transformation design acts as a form of either unwanted or beneficial supervision, impacting feature clustering and representation relevance. Importantly, these effects vary based on class labels in a supervised dataset. In microscopy images, transformation design significantly influences the representation, introducing imperceptible yet strong biases. We demonstrate that strategic transformation selection, based on desired feature invariance, drastically improves classification performance and representation quality, even with limited training samples.</p>\",\"PeriodicalId\":72371,\"journal\":{\"name\":\"Biological imaging\",\"volume\":\"4 \",\"pages\":\"e12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2633903X2400014X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X2400014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉中的自监督表示学习(SSRL)在很大程度上依赖于简单的图像变换,如随机旋转、作物或照明,以学习有意义和不变的特征。尽管承认转型选择的重要性,但文献中缺乏对转型选择影响的全面探索。我们的研究深入到这种关系,特别关注显微镜成像与微妙的细胞表型差异。我们揭示了转换设计作为一种有害或有益的监督形式,影响特征聚类和表示相关性。重要的是,这些效果根据监督数据集中的类标签而变化。在显微镜图像中,变换设计显著影响表征,引入难以察觉但强烈的偏差。我们证明了基于期望特征不变性的策略转换选择,即使在有限的训练样本下也能极大地提高分类性能和表示质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring self-supervised learning biases for microscopy image representation.

Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype differences. We reveal that transformation design acts as a form of either unwanted or beneficial supervision, impacting feature clustering and representation relevance. Importantly, these effects vary based on class labels in a supervised dataset. In microscopy images, transformation design significantly influences the representation, introducing imperceptible yet strong biases. We demonstrate that strategic transformation selection, based on desired feature invariance, drastically improves classification performance and representation quality, even with limited training samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信