延长疫苗半衰期是提高亚单位疫苗免疫反应持久性的新策略。

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI:10.1371/journal.ppat.1012845
Zhaoling Shen, Cheng Li, Wenping Song, Litong Liu, Yu Kong, Ailing Huang, Qingui Bao, Tianlei Ying, Yanling Wu
{"title":"延长疫苗半衰期是提高亚单位疫苗免疫反应持久性的新策略。","authors":"Zhaoling Shen, Cheng Li, Wenping Song, Litong Liu, Yu Kong, Ailing Huang, Qingui Bao, Tianlei Ying, Yanling Wu","doi":"10.1371/journal.ppat.1012845","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored. In this study, we developed two trimeric SARS-CoV-2 subunit vaccines with distinct pharmacokinetic profiles to evaluate the impact of vaccine persistence on immune efficacy. A self-assembling trimeric subunit vaccine (RBD-HR/trimer) was designed, followed by an extended-persistence variant (RBD-sFc-HR/trimer) incorporating a soluble monomeric IgG1 fragment crystallizable. We demonstrated that RBD-sFc-HR/trimer elicited more robust and higher levels of neutralizing antibodies, with potent and broad neutralization activity against multiple SARS-CoV-2 variants. Notably, RBD-sFc-HR/trimer induced a durable immune response, significantly increasing the number of memory B cells and T cells. This study provides critical insights for designing vaccines that achieve potent and long-lasting immune responses against infectious diseases.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 1","pages":"e1012845"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing vaccine half-life as a novel strategy for improving immune response durability of subunit vaccines.\",\"authors\":\"Zhaoling Shen, Cheng Li, Wenping Song, Litong Liu, Yu Kong, Ailing Huang, Qingui Bao, Tianlei Ying, Yanling Wu\",\"doi\":\"10.1371/journal.ppat.1012845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored. In this study, we developed two trimeric SARS-CoV-2 subunit vaccines with distinct pharmacokinetic profiles to evaluate the impact of vaccine persistence on immune efficacy. A self-assembling trimeric subunit vaccine (RBD-HR/trimer) was designed, followed by an extended-persistence variant (RBD-sFc-HR/trimer) incorporating a soluble monomeric IgG1 fragment crystallizable. We demonstrated that RBD-sFc-HR/trimer elicited more robust and higher levels of neutralizing antibodies, with potent and broad neutralization activity against multiple SARS-CoV-2 variants. Notably, RBD-sFc-HR/trimer induced a durable immune response, significantly increasing the number of memory B cells and T cells. This study provides critical insights for designing vaccines that achieve potent and long-lasting immune responses against infectious diseases.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 1\",\"pages\":\"e1012845\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012845\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012845","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疫苗被广泛认为是对抗传染病最有效的策略之一。然而,重大挑战仍然存在,例如抗体水平不足,对快速演变的变体的保护有限,以及免疫耐久性差,特别是在亚单位疫苗中,可能是由于它们在体内暴露时间短。最近在延长蛋白质治疗半衰期方面的进展显示出改善药物疗效的希望,但增加体内持久性是否可以提高亚单位疫苗的疗效仍未得到充分探讨。在这项研究中,我们开发了两种具有不同药代动力学特征的三聚体SARS-CoV-2亚单位疫苗,以评估疫苗持久性对免疫功效的影响。设计了一种自组装三聚体亚单位疫苗(RBD-HR/trimer),随后设计了一种扩展持久性变体(RBD-sFc-HR/trimer),其中包含可结晶的可溶性单体IgG1片段。我们证明RBD-sFc-HR/三聚体引发了更强、更高水平的中和抗体,对多种SARS-CoV-2变体具有有效和广泛的中和活性。值得注意的是,RBD-sFc-HR/三聚体诱导了持久的免疫反应,显著增加了记忆B细胞和T细胞的数量。这项研究为设计疫苗提供了重要的见解,以实现对传染病的有效和持久的免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing vaccine half-life as a novel strategy for improving immune response durability of subunit vaccines.

Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored. In this study, we developed two trimeric SARS-CoV-2 subunit vaccines with distinct pharmacokinetic profiles to evaluate the impact of vaccine persistence on immune efficacy. A self-assembling trimeric subunit vaccine (RBD-HR/trimer) was designed, followed by an extended-persistence variant (RBD-sFc-HR/trimer) incorporating a soluble monomeric IgG1 fragment crystallizable. We demonstrated that RBD-sFc-HR/trimer elicited more robust and higher levels of neutralizing antibodies, with potent and broad neutralization activity against multiple SARS-CoV-2 variants. Notably, RBD-sFc-HR/trimer induced a durable immune response, significantly increasing the number of memory B cells and T cells. This study provides critical insights for designing vaccines that achieve potent and long-lasting immune responses against infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信